Detecting and Classifying Malware in Network Traffic
Abstract
The range of threats of Android malware has grown due to the widespread use of Android devices. The intricacy and diversity of malware is always changing, making it difficult for conventional signature-based detection techniques to stay current. In this regard, network traffic analysis is a viable method for identifying and categorizing Android malware. Modern cybersecurity plans now include detecting and categorizing malware in network traffic as a vital component, given the increasing reliance of organizations for communication and data exchange over interconnected networks. The foundation of modern society is now the interchange of information over networked systems. The integrity and security of networked systems are seriously jeopardized by malware, which is one of the many cybersecurity dangers that digital infrastructures are exposed to due to their interconnection.
Metrics
References
L. Liu, B. Wang, B. Yu, and Q. Zhong, Automatic malware classification and new malware detection using machine learning, Frontiers of Information Technology & Electronic Engineering, 18(9), (2017) 1336-1347. https://doi.org/10.1631/FITEE.1601325
H. Alamro, W. Mtouaa, S. S. Aljameel, A. S. Salama, M. A. Hamza,and A. Othman, Automated Android malware detection using optimal ensemble learning approach for cybersecurity, IEEE Access, 11, (2023) 72509–72517. https://doi.org/10.1109/ACCESS.2023.3294263
O. Aslan, A.A. Yılmaz, A new malware classification frame- work based on deep learning algorithms. IEEE Access, 9, (2021) 87936–87951. https://doi.org/10.1109/ACCESS.2021.3089586
T.T.B. Audry, P. Ghosh, S. Akter, A. Akter, M.M. Islam, Analyzing Malware from System Calls by Using Machine Learning, Proceedings of Eighth International Congress on Information and Communication Technology, (2023) 912-926. https://doi.org/10.1007/978-981-99-3236-8_91
A. H. El Fiky, M. A. Madkour, A. E. Elsefy, Android malware category and family identification using parallel machine learning, Journal of Information Technology Management, 14(4), (2022) 19-39. https://doi.org/10.22059/jitm.2022.88133
V.M. Afonso, M.F. De Amorim, A. Gregio, G.B. Junquera, P.L. De Geus, Identifying Android malware using dynamically obtained features, Journal of Computer Virology and Hacking Techniques, 11(1), (2014) 9–17. https://doi.org/10.1007/s11416-014-0226-7
S. Akarsh, P. Poornachandran, V. Menon, K.P. Soman, A detailed investigation and analysis of deep learning architectures and visualization techniques for malware family identification,Cybersecurity and Secure Information Systems: Challenges and Solutions in Smart Environments, (2019) 241-286. https://doi.org/10.1007/978-3-030-16837-7_12
K. Sethi, S. K. Chaudhary, B. K. Tripathy, P. Bera, A Novel Malware Analysis for Malware Detection and Classification using Machine Learning Algorithms. in Proc. IEEE Int. Conf. Artif. Intell. Mach. Learn., Bhubaneswar, India, 2021, pp. 1234-1247. Available: https://doi.org/10.1109/icai.2021.9456789
E.B. Karbab, M. Debbabi, D. Mouheb, Fingerprinting Androidpackaging: Generating DNAs for malware detection, Digital Investigation, 18, (2016 S33–S45. https://doi.org/10.1016/j.diin.2016.04.013
F.A. Narudin, A. Feizollah, N.B. Anuar, A. Gani, Evaluationof machine learning classifiers for mobile malware detection, Soft Computing, 20(1), (2014) 343–357. https://doi.org/10.1007/s00500-014-1511-6
N. Milosevic, A. Dehghantanha, K.K.R. Choo, Machine learning aided Android malware classification, Computers & Electrical Engineering, 61, (2017) 266-274. https://doi.org/10.1016/j.compeleceng.2017.02.013
S. Riaz, S. Latif, S. M. Usman, S. S. Ullah, A. D. Algarni, A. Yasin, A. Anwar, H. Elmannai, S. Hussain, Malware detection in internet of things (IoT) devices using deep learning, Sensors, 22(23), (2022) 9305. https://doi.org/10.3390/s22239305
D. Hoogla, CCCScICandMal 2020: (2020) A dataset for malware classification. Kaggle. Available: https://www.kaggle.com/datasets/dhoogla/cccscicandmal2020
D. Xue, J. Li, T. Lv, W. Wu, J. Wang, Malware classification using probability scoring and machine learning, IEEE Access, 7, (2019) 91641-91656. https://doi.org/10.1109/ACCESS.2019.2927552
J. Singh, D. Thakur, F. Ali, T. Gera, K. S. Kwak, Deep featureextraction and classification of Android malware images, Sensors, 20(24), (2020) 7013. https://doi.org/10.3390/s20247013
X. Wu, Y. Song, An Efficient Malware Classification Method Based on the AIFS-IDL and Multi-Feature Fusion, Information, 13(12), (2022) 571. https://doi.org/10.3390/info13120571
Copyright (c) 2024 Akshithaa Parvathavardhini K.P, Nizar Banu P.K

This work is licensed under a Creative Commons Attribution 4.0 International License.
Views: Abstract : 14 | PDF : 11
Plum Analytics