Mortality of Tribolium castaneum and quality changes in Oryza sativa by indirect exposure to Non-Thermal Plasma

  • Anjaly Paul a Centre of excellence in non-thermal processing, Indian Institute of Food Processing Technology, Thanjavur- 613005, Tamil Nadu, India.
  • Mahendran R a Centre of excellence in non-thermal processing, Indian Institute of Food Processing Technology, Thanjavur- 613005, Tamil Nadu, India.
Keywords: Non-Thermal Plasma, Phosphine, Mortality, Tribolium castaneum, Quality changes, Oryza sativa


The management of stored product pests is a serious concern as it contributes to postharvest product losses. This study investigated the influence of NTP on the control of Tribolium castaneum adults and the quality of Oryza sativa and compared with phosphine fumigation. The experiments were performed at 100 - 200 V of NTP and 100 - 200 ppm of phosphine for the exposure periods of 8, 16, and 24 h. Mortality of 100 % and 86.67 % was obtained at 24 h of exposure for plasma treatment (200 V) and phosphine (200 ppm), respectively. The quality changes in rice during the mortality studies were also evaluated for treated samples. The cooking properties, texture, hydration behavior, and pasting profile along with color and moisture content were investigated. The statistical analysis did not report any significant quality changes for plasma and phosphine treated rice compared to the untreated samples. The microstructural changes in the rice was also examined by scanning electron microscope. The results suggest that NTP treatment can be used as a useful tool for the control of T. castaneum without affecting the properties of rice. However, large scale studies have to be explored for practical usage of NTP in management of stored product pests.


Download data is not yet available.


Metrics Loading ...


P. C. Annis, (2001) Phosphine dosage regimes required for high mortality: a database approach, In Proceedings of International Conference on Controlled Atmosphere and Fumigation in Stored Products, Fresno, CA, 45-55.

S. Boyer, H. Zhang, G. Lemperiere, A review of control methods and resistance mechanisms in stored-product insects, Bulletin of entomological research, 102 (2012) 213-229.

M. Q. Chaudhry, Phosphine resistance, Pesticide outlook, 11 (2000) 88-91.

J. C. Holloway, M. G. Falk, R. N. Emery, P. J. Collins, M. K. Nayak, Resistance to phosphine in Sitophilus oryzae in Australia: A national analysis of trends and frequencies over time and geographical spread, Journal of Stored Products Research, 69 (2016) 129-137.

M. Baier, M. Gorgen, J. Ehlbeck, D. Knorr, W. B. Herppich, O. Schlüter, Non-thermal atmospheric pressure plasma: screening for gentle process conditions and antibacterial efficiency on perishable fresh produce, Innovative Food Science & Emerging Technologies, 22 (2014) 147-157.

R. Thirumdas, C. Sarangapani, U.S. Annapure, Cold Plasma: A novel non-thermal technology for food processing, Food Biophys, 10 (2014) 1–11.

B. L. Bures, K. V. Donohue, R. M. Roe, M. A. Bourham, Visualization of helium dielectric barrier discharge treatment of green peach aphids on tobacco leaves, IEEE Transactions on Plasma Science, 33 (2005) 290-291.

K. V. Donohue, B. L. Bures, M. A. Bourham, R. M. Roe, Mode of action of a novel nonchemical method of insect control: atmospheric pressure plasma discharge, Journal of economic entomology, 99 (2006) 38-47.

K. V. Donohue, B. L. Bures, M. A. Bourham, R. Michael Roe, Effects of temperature and molecular oxygen on the use of atmospheric pressure plasma as a novel method for insect control, Journal of economic entomology, 101 (2008) 302-308.

M. I. Ferreira, J. G. L.Gomes, M. S. Benilov, M..Khadem, Effects of Nonthermal Atmospheric-Pressure Plasma on Drosophila Development, Plasma Medicine, 6 (2016) 115–124.

M. F. Abd El-Aziz, E. A. Mahmoud, G. M. Elaragi, Non thermal plasma for control of the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae), Journal of stored products research, 59 (2014) 215-221.

S. Afsheen, U. Fatima, T. Iqbal, M. Abrar, S. Muhammad, A. Saeed, S. Shamas, Influence of cold plasma treatment on insecticidal properties of wheat seeds against red flour beetles. Plasma Science and Technology, 21 (2019) 085506.

M. Radhakrishnan, K.R. Ramanan, R.Sarumathi, Effect of cold plasma on the mortality of Tribolium castaneum on maida flour, Scientific Journal Agricultural Engineering, 3 (2016) 37–44.

K. R. Ramanan, R. Sarumathi, R. Mahendran, Influence of cold plasma on mortality rate of different life stages of Tribolium castaneum on refined wheat flour, Journal of Stored Products Research, 77 (2018) 126-134.

J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, T. Von Woedtke, R. Brandenburg, K. D. Weltmann, Low temperature atmospheric pressure plasma sources for microbial decontamination, Journal of Physics D: Applied Physics, 44 (2010) 1-34.

R. Thirumdas, C. Saragapani, M. T. Ajinkya, R. R. Deshmukh, U. S. Annapure, Influence of low pressure cold plasma on cooking and textural properties of brown rice, Innovative Food Science & Emerging Technologies, 37 (2016) 53-60.

H. H. Chen, Y. K. Chen, H. C. Chang, Evaluation of physicochemical properties of plasma treated brown rice. Food Chemistry, 135 (2012) 74-79.

A. Formato, D. Naviglio, G. P. Pucillo, G. Nota, Improved fumigation process for stored foodstuffs by using phosphine in sealed chambers, Journal of agricultural and food chemistry, 60 (2012) 331-338.

F. Sen, K. B. Meyvaci, U. Aksoy, M. Emekci, A. G. Ferizli, Effects of the post-harvest application of methyl bromide alternatives on storage pests and quality of dried fig, Turkish Journal of Agriculture and Forestry, 33 (2009) 403-412.

W. S. Abbott, A method of computing the effectiveness of an insecticide, Journal of Economic Entomology, 18 (1925) 265-267.

N. Singh, L. Kaur, N. S. Sodhi, K. S. Sekhon, Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivars, Food chemistry, 89 (2005) 253-259.

S. Potluri, K. Sangeetha, R. Santhosh, G. Nivas, R. Mahendran, Effect of low‐pressure plasma on bamboo rice and its flour, Journal of Food Processing and Preservation, 42 (2018) 1-7.

M. A. Fitzgerald, M. Martin, R. M.Ward, W. D. Park, H. J. Shead, Viscosity of rice flour: A rheological and biological study, Journal of agricultural and food chemistry, 51 (2003) 2295-2299.

K. Bashir, T. L. Swer, K. S. Prakash, M. Aggarwal, Physico-chemical and functional properties of gamma irradiated whole wheat flour and starch, LWT-Food Science and Technology, 76 (2017) 131-139.

R. Vadivambal, D. S. Jayas, N. D. G. White, Wheat disinfestation using microwave energy, Journal of Stored Products Research, 43 (2007) 508-514.

R. Jagadeesan, V. T. Singarayan, K. Chandra, P. R. Ebert, M. K. Nayak, Potential of co-fumigation with phosphine (PH3) and sulfuryl fluoride (SO2F2) for the management of strongly phosphine-resistant insect pests of stored grain, Journal of economic entomology, 111 (2018) 2956-2965.

S. Rajendran, Status of fumigation in stored grains in India, Journal of Grain Storage Research, (2016) 28-38.

M. Q. Chaudhry, N. R. Price, Comparison of the oxidant damage induced by phosphine and the uptake and tracheal exchange of 32P-radiolabelled phosphine in the susceptible and resistant strains of Rhyzopertha dominica (F.)(Coleoptera: Bostrychidae), Pesticide Biochemistry and Physiology, 42 (1992) 167-179.

R .Dua, K. D. Gill, Effect of aluminium phosphide exposure on kinetic properties of cytochrome oxidase and mitochondrial energy metabolism in rat brain, Biochimica et Biophysica Acta (BBA)-General Subjects, 1674 (2004) 4-11.

D. I. Schlipalius, N. Valmas, A. G. Tuck, R. Jagadeesan, L. Ma, R. Kaur, P. R. Ebert, A core metabolic enzyme mediates resistance to phosphine gas. Science, 338 (2012) 807-810.

T. Liu, L. Li, F. Zhang, Y. Wang, Transcriptional inhibition of the Catalase gene in phosphine-induced oxidative stress in Drosophila melanogaster, Pesticide biochemistry and physiology, 124 (2015) 1-7.

D. A.Mendis, M. Rosenberg, F. Azam, A note on the possible electrostatic disruption of bacteria, IEEE transactions on plasma science, 28 (2000) 1304-1306.

N. N. Misra, B. K. Tiwari, K. S. M. S. Raghavarao, P. J. Cullen, Nonthermal plasma inactivation of food-borne pathogens, Food Engineering Reviews, 3 (2011) 159-170.

N. N. Misra, S. Patil, T. Moiseev, P. Bourke, J. P. Mosnier, K. M. Keener, P. J. Cullen, In-package atmospheric pressure cold plasma treatment of strawberries, Journal of Food Engineering, 125 (2014) 131-138.

H. P. Sandhu, F. A. Manthey, S. Simsek, Quality of bread made from ozonated wheat (Triticum aestivum L.) flour, Journal of the Science of Food and Agriculture, 91 (2011) 1576-1584.

E. L. Bonjour, G. P. Opit, J. Hardin, C. L. Jones, M. E. Payton, R. L. Beeby, Efficacy of ozone fumigation against the major grain pests in stored wheat, Journal of Economic Entomology, 104 (2011) 308-316.

H. Sousa, L. R. A. Faroni, G. N. Silva, R. N. C. Guedes, Ozone toxicity and walking response of populations of Sitophilus zeamais (Coleoptera: Curculionidae), Journal of economic entomology, 105 (2012) 2187-2195.

How to Cite
Paul, A., & R, M. (2020). Mortality of Tribolium castaneum and quality changes in Oryza sativa by indirect exposure to Non-Thermal Plasma. Frontiers in Advanced Materials Research, 2(2), 26-40.

Views: Abstract : 105 | PDF : 54

Plum Analytics