Development of a Laboratory-Scale Thermal-Arc-Plasma Reactor and its Application in the Pyrolysis of Petroleum Oily Sludge

  • Abubakar M. Ali Department of Chemical Engineering, Kaduna Polytechnic, Kaduna- Nigeria.
  • Mohd A. Abu-Hassan Department of Chemical Engineering, Universiti Teknology Malaysia, Johor-Malaysia.
  • Raja R.K. Ibrahim Department of Physics, Universiti Technologi Malaysia, Johor-Malaysia.
  • Bala I. Abdulkarim Department of Chemical Engineering, University of Abuja, Abuja-Nigeria.
Keywords: Thermal plasma, petroleum oily sludge, Plasma arc temperature, Mass reduction, Carbon conversion

Abstract

Waste treatment using thermal arc plasma is well established and laboratory/pilot scale plasma reactors were developed and their performances for the destruction of different hazardous wastes, other than petroleum oily sludge, were studied. This work aims to extend the plasma technology to the pyrolysis of hazardous petroleum oily sludge. A 4.7 kW thermal arc plasma reactor was developed using a standard TIG arc welding torch. The transferred arc plasma reactor was used to treat 20 g/batch of petroleum oily sludge. The prevailing temperature inside the reactor ranges between 356 – 1694 oC. The plasma arc temperature increased with increasing plasma arc current and also with increasing plasma gas flow-rate. A vitreous slag and a flue gas were generated as products. A mass reduction of between 36.87 – 91.40% and a TOC reduction of 21.47 – 93.76% were achieved in the treatment time of 2 – 5 min. The mass reduction was observed to increase with treatment time. However, the increase was more rapid between the 3rd and the 4th min of the treatment. The flue gas produced contains H2 (43.79 – 50.97 mol%), H2O (26.60 – 30.22 mol%), CO (8.45 – 11.18 mol%), CO2 (5.12 – 10.35 mol%), CH4 (2.17 – 3.38 mol%), C2H2 (0.86 – 2.69 mol%) and C2H4 (0.76 – 2.17 mol%). Thus, the thermal plasma reactor provides a suitable method of treating petroleum oily sludge.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

N. Agon, (2015) Development and study of different numerical plasma jet models and experimental study of plasma gasification of waste. Ghent University,

A.M. Ali, M.A. Abu Hassan, B.I. Abdulkarim, Thermal Plasma: A Technology for Efficient Treatment of Industrial and Wastewater Sludge, J. Environ. Sci. Toxicol. Food. Technol, 10(2016) 63 - 75.

A. M. Ali, M.A. Abu Hassan, R.R.K. Ibrahim, A.A. Jalil, N.H. Mat Nayan, B.I. Abdulkarim, A.H. Sabeen, (2019) Analysis of Solid residue and Flue Gas from Thermal Plasma Treatment of Petroleum Sludge, J. Environ. Chem. Eng., 7(4), 103207.

N. Barcza, The development of large-scale thermal-plasma systems. J. S. Afr. Inst. Min. Metall., 86(8) (1986) 317-333.

J. Bień, P. Celary, B. Morzyk, J. Sobik-Szołtysek, & K. Wystalska, Effect of Additives on Heavy Metal Immobilization During Vitrification of Tannery Sewage Sludge, Environ. Prot. Eng, 39(2) (2013): 33-40.

P. Celary, J. Sobik-Szołtysek, Vitrification as an alternative to landfilling of tannery sewage sludge, Waste Manag, 34(12) (2014) 2520-2527.

R. Cortez, H.H. Zaghloul, L.D. Stephenson, E.D. Smith, J.W. Wood, & D.G.Cahil, Laboratory scale thermal plasma arc vitrification studies of heavy metal-laden waste, J. Air Waste Manage, 46(11) (1996) 1075-1080.

A.L.V. Cubas, E. Carasek, N.A. Debacher, & I.G. De-Souza, Development of a DC-Plasma Torch Constructed with Graphite Electrodes and an Integrated Nebulization System for Decomposition of CCl4, J. Braz. Chem. Soc., 16(3B) (2005) 531-534.

A.L.V. Cubas, M.D.-M. Machado, M.D.-M. Machado, F. Gross, R.F. Magnago, E.H.S. Moecke, & I.G. De-Souza, Inertization of Heavy Metals Present in Galvanic Sludge by DC Thermal Plasma, Environ. Sci. & technol., 48(5) (2014) 2853-2861.

J. Heberlein, & A.B. Murphy, Topical review: Thermal plasma waste treatment, J. Phys. D Appl. Phys. 41(2008) 1-20.

Q. Huang, J. Wang, K. Qiu, Z. Pan, S. Wang, Y. Chi, & J. Yan, Catalytic pyrolysis of petroleum sludge for production of hydrogen-enriched syngas, Int. J. Hydrogen Energ, 40(46) (2015) 16077-16085.

P. Khongkrapan, P. Thanompongchart, N. Tippayawong, T. Kiatsiriroat, Fuel gas and char from pyrolysis of waste paper in a microwave plasma reactor, Int. J. Energy Environ., 4(6) (2013) 969 - 974.

H. Kim, & D. Park, Characteristics of Fly Ash/Sludge Slags Vitrified by Thermal Plasma. J. Ind. Eng. Chem., 10(2) (2004) 234-238.

I. Kourti, A.R. Devaraj, A.G. Butos, D. Deegan, A.R. Boccaccini, & C.R. Cheeseman, Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: Properties and characterisation of the binder phase, J. Hazard. Mater., 196(2011) 86-92.

E. Leal-Quirós, & C.R. Villafañe, An Assessment of the Power Generated With Plasma Processing of Sludge From Wastewater Treatment Plants, IEEE T. Plasma Sci, 35(6) (2007) 1622-1627.

C. Li, W. Lee, K. Huang, S. Fu, & Y. Lai, Vitrification of Chromium Electroplating Sludge, Environ sci & technol, 41(8) (2007) 2950-2956.

O.L. Li, Y. Guo, J.S. Chang, K. Urashima, & N. Saito, Treatment of Non-point Sources by a Thermal Plasma System Under DC Partial Transferred Mode, Int. J. Plasma Environ. Sci. & Technol., 6(1) (2012) 63 - 67.

O.L. Li, Y. Guo, J.S. Chang, K. Urashima, & N. Saito, A new approach of nonpoint source pollution/stormwater sludge treatment by an integrated thermal plasma system, International Journal of Environmental Science and Technology, 12(5) (2015) 1769-1778.

O.L. Li, Y. Guo, J.S. Chang, & N. Saito, (2015). Thermal plasma treatment of stormwater sediments: comparison between DC nontransferred and partially transferred arc plasma. Environ Technol, 36(13), 1672-1679.

Mohai, I., & Szépvölgyi, J. (2005). Treatment of particulate metallurgical wastes in thermal plasmas, Chemical Engineering and Processing, 44, 225-229.

A.H. Motlagh, S.V. Klyuev, A. Surendar, A.Z. Ibatova, & A. Maseleno, Catalytic gasification of oil sludge with calcined dolomite. Petroleum Science and Technology, 36 (2018) 1998-2002.

A. Mountouris, E. Voutsas, & D. Tassios, Plasma gasification of sewage sludge: Process development and energy optimization, Energy Convers. Manag, 49(8) (2008) 2264-2271.

M. Punčochář, B. Ruj, & P.K. Chatterj, Development of Process for Disposal of Plastic Waste Using Plasma Pyrolysis Technology and Option for Energy Recovery, Procedia Eng., 42(2012) 420-430.

K. Ramachandran, & N. Kikukawa, Thermal Plasma In-Flight Treatment of Electroplating Sludge. IEEE T. Plasma Sci., 30(1) (2002) 310-317.

A. Sattar, G.A. Leeke, A. Hornung, & J. Wood, Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas, Biomass Bioenerg., 69(2014) 276-286.

J. Shie, Y. Liau, K. Lin, & C. Chang, (2014) Thermal Treatment of Paper Sludge Using Torch Plasma. Paper presented at the 2014 4th International Conference on Future Environment and Energy, IACSIT Press, Singapore.

E. Sobiecka, & L. Szymanski, Thermal plasma vitrification process as an effective technology for fly ash and chromium-rich sewage sludge utilization, J. Chem. Technol. Biot., 89(7) (2014) 1115-1117.

J. Szałatkiewicz, R. Szewczyk, E. Budny, T. Missala, W. Winiarski, Determination of PID control parameters of plasmatron plasma reactor, J. Appl. Comput. Sci. Methods., 4(2) (2012) 31--39.

J. Szałatkiewicz, R. Szewczyk, E. Budny, T. Missala, & W. Winiarski, Construction Aspects of Plasma Based Technology for Waste of Electrical and Electronic Equipment (WEEE) Management in Urban Areas, Procedia Eng., 57(Supplement C) (2013) 1100-1108.

L. Tang, & H. Huang, Biomass gasification using capacitively coupled RF plasma technology. Fuel, 84(16) (2005a) 2055-2063.

L. Tang, & H. Huang, Treatment of Waste Tyre Powder Using a High-frequency Capacitively Coupled Plasma Reactor, Chin. J. Process Eng., 5(3) (2005b) 295-300.

L. Tang, H. Huang, Z. Zhao, C.Z. Wu, & Y. Chen, Pyrolysis of Polypropylene in a Nitrogen Plasma Reactor, Ind. Eng. Chem. Res., 42(2003)1145-1150.

N. Tippayawong, & P. Khongkrapan, Development of a laboratory scale air plasma torch and its application to electronic waste treatment, Int. J. Environ. Sci. Tech., 6(3) (2009) 407-414.

T. Townsend, & W. Oehmig, (2014) Development of a Bench-Scale Plasma Arc Vitrification Unit and the Exploration of Element Behavior in High Temperature Plasma Vitrification. (PhD), University of Florida, Hinkley Center for Solid and Hazardous Waste Management. (Report # 81839)

W-A. Tu, J-L. Shie, C-Y. Chang, C-F. Chang, C-F. Lin, S-Y. Yang, J-T. Kuo, D-G. Shaw, D-J. Lee, Pyrolysis of Rice Straw Using Radio-Frequency Plasma, Energ. Fuel. 22(1) (2008) 24-30.

Z. Zhao, H. Huang, C. Wu, H. Li, & Y. Chen, Biomass Pyrolysis in an Argon/Hydrogen Plasma Reactor, Eng. Life Sci., 1(5) (2001) 19 -199.

Published
2020-05-26
How to Cite
M. Ali, A., A. Abu-Hassan, M., R.K. Ibrahim, R., & I. Abdulkarim, B. (2020). Development of a Laboratory-Scale Thermal-Arc-Plasma Reactor and its Application in the Pyrolysis of Petroleum Oily Sludge. Frontiers in Advanced Materials Research, 2(1), 15-27. https://doi.org/10.34256/famr2012
Section
Articles



Views: Abstract : 291 | PDF : 229

Plum Analytics