Charge density studies of energetic material: RDX

  • David Stephen A Department of Physics, Hindusthan Institute of Technology, Coimbatore 641032, India.
  • Asthana S.N High Energy Material Research Laboratory, DRDO, Sutarwadi, Pune-411 021, India.
  • Rajesh. B. Pawar High Energy Material Research Laboratory, DRDO, Sutarwadi, Pune-411 021, India
  • Kumuradhas P Department of Physics, Periyar University, Salem-636 011, India.
Keywords: RDX, Isosurface, Crystal

Abstract

Experimental charge density study has been carried out for Cyclotrimethylene-trinitramine (space group Pbca), an explosive material from a low temperature X-ray diffraction experiment. The electron density was modeled using the Hansen-Coppens multipole model and refined to R=0.032 for 6226 unique observed reflections. The electron density, laplacian and electrostatic potential distributions are reported and discussed, especially, the properties of the bond (3,-1) critical points, which are thought to play a key role in the decomposition of the molecule. From the bond topological analysis of all the bonds, it is observed that the N–N bond is the weakest. The dominating nature of the oxygen atoms was clearly well understood from isosurface electrostatic potential of isolated and symmetrically sitting molecules in the crystal.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

G. I. Brown, (1998) The Big Bang, A History of Explosives, Sutton Publishing, UK.

I. Khan, Coming of Gunpowder to the Islamic World and North India, Spotlight on the Role of the Mongols, J. Asian Hist., 30 (1996) 41–50.

I. Khan, (1996) The Role of the Mongols in the Introduction of Gunpowder and Firearms in South Asia, In Buchanan, Brenda J. Gunpowder, The History of an International Technology, Bath University Press, Bath.

I. Khan, (2004) Gunpowder and Firearms, Warfare in Medieval India, Oxford University Press, Oxford, UK.

P. Politzer, J.S. Murray, (Eds) Energetic Materials, Theoretical and Computational Chemistry Series, Elsevier, New York, 12 (2003).

E. A. Zhurova, A. A. Pinkerton, Chemical bonding in energetic materials: [beta]-NTO, Acta Cryst. B, B57 (2001) 359–365.

E. A.Zhurova, V. G. Tsirelson, A. I.Stash, M. V. Yakovlev, A. A.Pinkerton, Electronic Energy Distributions in Energetic Materials: NTO and the Biguanidinium Dinitramides, J. Phys. Chem. B, 108 (2004) 20173–20179.

E. A. Zhurova, A. I.Stash, V. V. Z.Mikhail, E. V. Barthashevich, V. A. Potemkin, & A. A. Pinkerton, Atoms-in-Molecules Study of Intra- and Intermolecular Bonding in the Pentaerythritol Tetranitrate Crystal, J. Am. Chem. Soc., 128 (2006)14728–14734.

Y.-S.Chen, , A. I. Stash& , A. A Pinkerton, Chemical bonding and intermolecular interactions in energetic materials: 1,3,4-tri­nitro-7,8-di­aza­pentalene, ACTA CRYSTALLOGR B, B63(2007) 309-318.

A. Meents, B. Dittrich, S.K.J.Johnas, V. Thome, & E.F. Weckert, Charge-density studies of energetic materials: CL-20 and FOX-7. Corrigendum, ACTA CRYSTALLOGR B, B64 (2008) 42-49.

C.S. Choi, E. Prince, The crystal structure of cyclotrimethylenetrinitramine, ACTA CRYSTALLOGR B, B28 (1972) 2857-2862.

N.K. Hansen, P. Coppens, Testing aspherical atom refinements on small-molecule data sets, Acta Cryst. A, 34 (1978) 909-921.

R. F. W.Bader, H. J.Essen, Bonded and nonbonded charge concentrations and their relation to molecular geometry and reactivity, J. Am. Chem. Soc., 106 (1984) 1594-1605.

Bruker, APEX. Bruker AXS Inc, Madison, Wisconsin, USA, (2000).

Bruker, SAINT, Bruker AXS Inc, Madison, Wisconsin, USA, (2000).

G.M. Sheldrick, (1998) SHELXS97, Programs for Crystal Structure Analysis (Release 97-2), Institut fur Anorganische Chemie der Universitat, D-3400 Gottingen, Germany.

G.M. Sheldrick, (1998) SHELXL97, Programs for Crystal Structure Refinement (Release 97-2), Institut fur Anorganische Chemie der Universitat: D-3400 Gottingen, Germany.

T. Koritsanszky, P. Macchi, C. Gatti, L.J. Farrugia, P. R. Mallinson, A. Volkov, T. Richter, XD-2006, A Computer Program Package for Multipole Refinement and Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental or Theoretical Structure Factors, Version 5.33, (2007).

H.Frank Allen, Olga kennard, G. David, Watson, Lee Brammer, A. Guy orpen, Robin Taylor. Tables of Bond length determined by X-Ray and Neutron Diffraction. Part 1 Bond lengths in organic compounds, J. Chem. Soc, Perkin Transactions, (1987).

V. Anatoliy, Y.A. Abramov, & P. Coppens, Aspherical-atom scattering factors from molecular wave functions. 1. Transferability and conformation dependence of atomic electron densities of peptides within the multipole formalism, Acta Cryst. A, A58 ( 2000) 406-472.

L. J. Farrugia, ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI), J. Appl. Crystallogr, 30 (1997) 565.

R.F.W. Bader, (1990) Atoms in Molecules- A Quantum Theory, Clarendon press, oxford.

A.Volkov, C. Gatti, Y. A. Abramov, P.Coppens, Evaluation of net atomic charges and atomic and molecular electrostatic moments through topological analysis of the experimental charge density, Acta Cryst. A, 56 ( 2000) 252-258.

R. Bianchi, C. Gatti, V. Adovasio, M. Nardelli, Theoretical and experimental (113 K) electron-density study of lithium bis(tetramethylammonium) hexanitrocobaltate(III), Acta Cryst. B, 52 (1996) 471-478.

B.B. Iversen, F.K. Larsen, B.N. Figgs, P.A. Reynolds, X-Ray–neutron diffraction study of the electron-density distribution in trans-tetraaminedinitronickel(II) at 9 K: transition-metal bonding and topological analysis, J. Chem. Soc., Dalton Transactions, (1997) 2227-2240.

P. Coppen, (1997) X-ray Charge density and Chemical bonding, Oxford Science Publications, Oxford, UK.

F. W.Biegler-Konig, R. F. W. Bader, T.Ting-Hau, Calculation of the average properties of atoms in molecules. II, J. Comput. Chem., 3 (1982) 317-328.

R.F. W.Bader, T.T. Nguyen-Dang, Quantum Theory of Atoms in Molecules–Dalton Revisited, Adv. Quantum. Chem.14 (1981) 63-124.

J.S. Murray, P. Lane, & P. Politzer, Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules, Mol. Phys, 85 (1995) 1-8.

Z.Su, P. Coppens, On the mapping of electrostatic properties from the multipole description of the charge density, Acta Cryst. A, A48 (1992) 188-197.

Published
2020-05-26
How to Cite
A, D. S., S.N, A., Rajesh. B. Pawar, & P, K. (2020). Charge density studies of energetic material: RDX. Frontiers in Advanced Materials Research, 2(1), 1-14. https://doi.org/10.34256/famr2011
Section
Articles



Views: Abstract : 230 | PDF : 200

Plum Analytics