Magnetic Nanoparticles Synthesis, Surface Coating, and Biomedical Applications: A Review
Abstract
In recent years, the development of magnetic nanoparticles (MNPs) has attracted the attention of users worldwide due to their potential for use in many fields, including biomedical applications. The unique properties of MNPs, such as superparamagnetism, high saturation magnetization, and biocompatibility, make them ideal for many biomedical applications, including cancer therapy, magnetic resonance imaging (MRI), and drug delivery. Synthetic methods include ball milling, gas phase condensation (GPC), sol-gel, and thermal decomposition. Surface coating of MNPs is important to improve their biocompatibility, stability, and targeting ability. Various coating materials are discussed, including organic polymers, inorganic silica, and gold. Using MNPs as a contrast agent in MRI improves image quality and allows imaging of small tumors. MNPs also show promise in cancer treatment, including chemotherapy and hyperthermia. Biocompatibility and toxicity of MNPs are important factors to consider in their biomedical applications. Surface coating of MNPs plays an important role in reducing their toxicity and increasing their biocompatibility. The use of biocompatible materials such as polyethylene glycol (PEG) increases the safety of MNPs in biomedical applications. Future research should focus on overcoming challenges associated with mass synthesis, coating, and biomedical applications of MNPs.
Downloads
Metrics
References
N. Kohler, C. Sun, A. Fichtenholtz, J. Gunn, C. Fang, M.Q Zhang, Methotrexate-immobilized poly (ethyleneglycol) magnetic nanoparticles for MR imaging and drug delivery Small, 2, (2006) 785–92. https://doi.org/10.1002/smll.200600009
V.P. Torchilin, V.S. Trubetskoy, Which polymers can make nanoparticulate drug carriers long-circulating. Advanced drug delivery reviews, 16(2-3), (1995) 141–55. https://doi.org/10.1016/0169-409X(95)00022-Y
J. Xie, C. Xu, N. Kohler, Y. Hou, S. Sun, Controlled PEGylation of monodisperse Fe3O 4 nanoparticles for reduced non-specific uptake by macrophage cells. Advanced Materials, 19(20), (2007) 3163-3166. https://doi.org/10.1002/adma.200701975
F. Quaglia, L. Ostacolo, G. Nese, M. Canciello, G. De Rosa, F. Ungaro, R. Palumbo, M.I. La Rotonda, G. Maglio, Micelles based on amphiphilic PCL-PEO triblock and star- shaped diblock copolymers: potential in drug delivery applications. Journal of Biomedical Materials Research. Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 87(3), 2008, 563–74. https://doi.org/10.1002/jbm.a.31804
K. Wu, J.P. Wang, (Eds.) (2024). Magnetic nanoparticles in nanomedicine. Elsevier.
M.E. Ali, M. Ullah, A. Maamor, S.B.A. Hamid, Surfactant Assisted Ball Milling: A Simple Top down Approach for the Synthesis of Controlled Structure Nanoparticle. Advanced Materials Research, 832, (2013) 356–361. https://doi.org/10.4028/www.scientific.net/AMR.832.356
L.M. Lacava, Z.G.M. Lacava, M.F. Da Silva, O. Silva, S.B. Chaves, R.B.D. Azevedo, F. Pelegrini, C. Gansau, N. Buske, D. Sabolovic, P.C. Morais, Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice. Biophysical journal,80(5), (2001) 2483–6. https://doi.org/10.1016/S0006-3495(01)76217-0
J. Cheng, B.A. Teply, I. Sherifi, J. Sung, G. Luther, F.X. Gu, E. Levy-Nissenbaum, A.F. Radovic-Moreno, R. Langer, O.C. Farokhzad, Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 28, (2007) 869–76. https://doi.org/10.1016/j.biomaterials.2006.09.047
C.M. J. Hu, R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C.H. Wen, A.V. Kroll, C. Carpenter, M. Ramesh , V. Qu , S.H. Patel , J. Zhu , W. Shi , F.M. Hofman , T.C. Chen , W. Gao , K. Zhang , S. Chien, L. Zhang, Nanoparticle bio interfacing by platelet membrane cloaking. Nature, 526, (2015) 118-121.
C.S. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced drug delivery reviews, 63(9), (2011) 789-808.
N. Nitin, L.E.W. LaConte, O. Zurkiya, X. Hu, G. Bao, Functionalization, and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. Journal of Biological Inorganic Chemistry, 9, (2004) 706–712. https://doi.org/10.1007/s00775-004-0560-1
H. Lee, K.Y. Mi, S. Park, S. Moon, J.M. Jung, Y.J. Yong, H.W. Kang, S. Jon, Thermally cross-linked superparamagnetic iron oxide nanoparticles: Synthesis and application as a dual imaging probe for cancer in vivo. Journal of the American Chemical Society, 129(42), (2007) 12739–12745. https://doi.org/10.1021/ja072210i
M. Kumagai, Y. Imai, T. Nakamura, Y. Yamasaki, M. Sekino, S. Ueno, K. Hanaoka, K. Kikuchi, T. Nagano, E. Kaneko, K. Shimokado, Iron hydroxide nanoparticles coated with poly (ethylene glycol)-poly (aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Colloids Surfaces B: Biointerfaces, 56(1-2), (2007) 74–181. https://doi.org/10.1016/j.colsurfb.2006.12.019
L.E.W. LaConte, N. Nitin, O. Zurkiya, D. Caruntu, C.J. O’Connor, X. Hu, G. Bao, Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity. Journal of the International Society for Magnetic Resonance in Medicine, 26(6), (2007) 1634–1641. https://doi.org/10.1002/jmri.21194
Y. Sheng, C. Liu, Y. Yuan, X. Tao, F. Yang, X. Shan, H. Zhou, F. Xu, Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan. Biomaterials, 30(12), (2009) 2340–2348. https://doi.org/10.1016/j.biomaterials.2008.12.070
J. Wang, B. Zhang, L. Wang, M. Wang, F. Gao, One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains. Materials Science and Engineering, 48, (2015) 416–423. https://doi.org/10.1016/j.msec.2014.12.026
J.W. Wiseman, C.A. Goddard, D. McLelland, W.H. Colledge, A comparison of linear and branched polyethylenimine (PEI) with DCChol/DOPE liposomes for gene delivery to epithelial cells in vitro and in vivo. Gene Therapy, 10(19), (2003) 1654–1662. https://doi.org/10.1038/sj.gt.3302050
A. Zakeri, M.A.J. Kouhbanani, N. Beheshtkhoo, V. Beigi, S.M. Mousavi, S.A.R. Hashemi, A. Karimi Zade, A.M. Amani, A. Savardashtaki, E. Mirzaei, S. Jahandideh, Polyethylenimine-based nanocarriers in co-delivery of drug and gene: A developing horizon. Nano reviews & experiments, 9(1), (2018) 488497. https://doi.org/10.1080/20022727.2018.1488497
P. Vicennati, A. Giuliano, G. Ortaggi, A. Masotti, Polyethylenimine in medicinal chemistry. Current medicinal chemistry, 15(27), (2008) 2826–2839. http://dx.doi.org/10.2174/092986708786242778
J. Li, Y. Zhou, M. Li, N. Xia, Q. Huang, H. Do, Y.N. Liu, F. Zhou, Carboxymethylated dextran-coated magnetic iron oxide nanoparticles for regenerable bioseparation. Journal of Nanoscience and Nanotechnology, 11(11), (2011) 10187–10192. https://doi.org/10.1166/jnn.2011.5002
G. Rivera-Hernández, M. Antunes-Ricardo, P. Martínez-Morales, M.L. Sánchez, Polyvinyl alcohol based-drug delivery systems for cancer treatment. International Journal of Pharmaceutics, 600, (2021) 120478. https://doi.org/10.1016/j.ijpharm.2021.120478
A.B. Salunkhe, V.M. Khot, N.D. Thorat, M.R. Phadatare, C.I. Sathish, D.S. Dhawale, S.H. Pawar, Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications. Applied surface science, 264, (2013) 598–604. https://doi.org/10.1016/j.apsusc.2012.10.073
H. Vu-Quang, M. Muthiah, H.J. Lee, Y.K. Kim, J.H. Rhee, J.H. Lee, C.S. Cho, Y.J. Choi, Y.Y. Jeong, I.K. Park, Immune cell-specific delivery of beta-glucan-coated iron oxide nanoparticles for diagnosing liver metastasis by MR imaging. Carbohydr. Polym. 87, (2012) 1159–1168. https://doi.org/10.1016/j.carbpol.2011.08.091
A. Patel, D. Asik, E.M. Snyder, A.E. Dilillo, P.J. Cullen, J.R. Morrow, Binding, and release of FeIII complexes from glucan particles for the delivery of T1 MRI contrast agents. ChemMedChem, 15(12), (2020) 1050–1057. https://doi.org/10.1002/cmdc.202000003
E.R. Soto, A.C. Caras, L.C. Kut, M.K. Castle, G.R. Ostroff, Glucan particles for macrophage argeted delivery of nanoparticles. Journal of drug delivery, 2012(1), (2012) 143524. https://doi.org/10.1155/2012/143524
J. Hwang, J. Son, Y. Seo, Y. Jo, K. Lee, D. Lee, M.S. Khan, S. Chavan, C. Park, A. Sharma, A.A. Gilad, Functional silica nanoparticles conjugated with beta-glucan to deliver anti-tuberculosis drug molecules. Journal of industrial and engineering chemistry, 58, (2018) 376–385. https://doi.org/10.1016/j.jiec.2017.09.051
Y. Su, L. Chen, F. Yang, P.C.K Cheung, Beta-d-glucan-based drug delivery system and its potential application in targeting tumor associated macrophages. Carbohydrate polymers, 253, (2021) 117258. https://doi.org/10.1016/j.carbpol.2020.117258
S. Langereis, T. Geelen, H. Grüll, G.J. Strijkers, K. Nicolay, Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR in Biomedicine, 26(7), (2013) 728–744. https://doi.org/10.1002/nbm.2971
N. Kamaly, A.D. Miller, Paramagnetic liposome nanoparticles for cellular and tumour imaging. International journal of molecular sciences, 11(4), (2010) 1759–1776. https://doi.org/10.3390/ijms11041759
W.T. l-Jamal, K. Kostarelos, Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Accounts of chemical research, 44(10), (2011) 1094-1104. https://doi.org/10.1021/ar200105p
G. Mikhaylov, U. Mikac, A.A. Magaeva, V.I. Itin, E.P. Naiden, I. Psakhye, L. Babes, T. Reinheckel, C. Peters, R. Zeiser, M. Bogyo, Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature nanotechnology, 6(9), (2011) 594–602.
J.J. Wang, Z.W. Zeng, R.Z. Xiao, T. Xie, G.L. Zhou, X.R. Zhan, S.L. Wang, Recent advances of chitosan nanoparticles as drug carriers. International journal of nanomedicine, 6, (2011) 765–774.
G. Song, L. Cheng, Y. Chao, K. Yang, Z. Liu, Emerging nanotechnology and advanced materials for cancer radiation therapy. Advanced materials, 29, (2017) 1700996. https://doi.org/10.1002/adma.201700996
A. Safari, A. Sarikhani, D. Shahbazi-Gahrouei, Z. Alamzadeh, J. Beik, A.S. Dezfuli, V.P Mahabadi, M. Tohfeh, A. Shakeri-Zadeh, Optimal scheduling of the nanoparticle-mediated cancer photo-thermo-radiotherapy. Photodiagn. Photodiagnosis and photodynamic therapy, 32, (2020), 102061. https://doi.org/10.1016/j.pdpdt.2020.102061
D. Wang, S. Wang, Z. Zhou, D. Bai, Q. Zhang, X. Ai, W. Gao, L. Zhang, White blood cell membrane-coated nanoparticles: Recent development and medical applications. Advanced Healthcare Materials, 11(7), (2022), 2101349.
L. Lartigue, M. Coupeau, M. Lesault, Luminophore and magnetic multicore nanoassemblies for dual-mode MRI and fluorescence imaging. Nanomaterials, 10, (2019) 28. https://doi.org/10.3390/nano10010028
N. Tran, T.J. Webster, Magnetic nanoparticles: biomedical applications and challenges. Journal of Materials Chemistry, 20(40), (2010) 8760-8767. https://doi.org/10.1039/C0JM00994F
Copyright (c) 2025 Karuppusamy Murugavel

This work is licensed under a Creative Commons Attribution 4.0 International License.
Views: Abstract : 64 | PDF : 36
Plum Analytics


.png)
.png)
.png)


.png)