Harnessing Mycelium Bio-composite panels for Improved Acoustic and Flame-Retardant Properties for Architectural Applications: A Comprehensive Review
Abstract
This article examines the development and characterization of mycelium-based composites derived from agricultural waste, with a focus on their acoustic and thermal insulation properties for architectural applications. The review evaluates composites created using various substrates—rice straw, corn husks, and sugarcane bagasse—bound together by Pleurotus ostreatus mycelium through a controlled growth and deactivation process. Testing revealed promising acoustic absorption coefficients (0.6-0.8) in the 500-2000 Hz frequency range, with corn husk-based composites demonstrating superior performance. Thermal conductivity values (0.038-0.044 W/mK) were comparable to commercial insulation products. Microstructural analysis showed that the unique integration of the three-dimensional mycelial network with natural fibres creates an optimal hierarchical porous structure for heat resistance and sound absorption. The research highlights how these sustainable bio-composites offer competitive performance to synthetic materials while supporting circular bioeconomy principles through waste utilization and biodegradability. Applications in building construction, acoustic panels, e-waste management, and water pollution remediation demonstrate the versatility and environmental benefits of these innovative materials.
Downloads
Metrics
References
D. Hoornweg, P. Bhada-Tata. (2012) what a waste: a global review of solid waste management.
S. Chattopadhyay, A. Dutta, S. Ray. (2009) Municipal solid waste management in Kolkata, India–A review. Waste Management 29(4), 1449-1458. https://doi.org/10.1016/j.wasman.2008.08.030
J. Wasim, A. Nine, (2016) Climate Change and Low Carbon Emission Green Building. Dhaka, Bangladesh: Greenie, Civil Engineering Fest, Military Institute of Science and Technology (MIST).
D. Zou, L. Gao. (2020) Preparation and properties of fungal mycelium based on garden waste. Science Discovery, 8(2), 43. https://doi.org/10.11648/j.sd.20200802.14
M. Dougoud, (2018) Mycelium Infrastructures for Impermanent Futures. Diss.
S. Krivanek, (2020) Fungal Mycelium; the Key to a Sustainable Future.
V. Ivanov, J. Chu, V. Stabnikov, (2014) Basics of construction microbial biotechnology. Biotechnologies and biomimetics for civil engineering. Cham: Springer International Publishing, 21-56. https://doi.org/10.1007/978-3-319-09287-4_2
N. Attias, O. Danai, T. Abitbol, E. Tarazi, N. Ezov, I. Pereman, Y.J. Grobman, (2020) Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. Journal of Cleaner Production 246, 119037. https://doi.org/10.1016/j.jclepro.2019.119037
Z. Tacer-Caba, J.J. Varis, P. Lankinen, K.S. Mikkonen, (2020) Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Materials & Design, 192, 108728. https://doi.org/10.1016/j.matdes.2020.108728
J.C. van Empelen, (2018) a study into more sustainable, alternative building materials as a substitute for concrete in tropical climates. Delft University of Technology, Delft, Netherlands, 1-26.
H. Javadian, Le Ferrand, D.E. Hebel, N. Saeidi, (2020) Application of mycelium-bound composite materials in construction industry: A short review. SOJ Materials Science & Engineering, 7(2), 1-9. http://dx.doi.org/10.15226/sojmse.2020.00162
A. Ghazvinian, B. Gursoy. (2022) Basics of building with mycelium-based bio-composites: a review of built projects and related material research. Journal of Green Building, 17(1), 37-69. https://doi.org/10.3992/jgb.17.1.37
S. Bhuvaneshwari, H. Subashini, J.N. Meegoda. (2019) Crop residue burning in India: policy challenges and potential solutions. International journal of environmental research and public health 16(5), 832. https://doi.org/10.3390/ijerph16050832
M. Haneef, L. Ceseracciu, C. Canale, I.S. Bayer, J.A. Heredia-Guerrero, (2017) A. Athanassiou, Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Scientific reports 7(1), 41292. https://doi.org/10.1038/srep41292
D. Takahashi, M. Tanaka, (2002) Flexural vibration of perforated plates and porous elastic materials under acoustic loading. The Journal of the Acoustical Society of America, 112(4), 1456-1464. https://doi.org/10.1121/1.1497624
J. Park, D.L. Palumbo, (2009) Damping of structural vibration using lightweight granular materials. Experimental mechanics 49, 697-705. https://doi.org/10.1007/s11340-008-9181-x
Mogu. (2020) Radical by Nature.
Mushroom Tiny House. (2023)
O. Zaragoza, A. Casadevall, (2021) Encyclopedia of mycology. Elsevier.
Ghazvinian, P. Farrokhsiar, F. Vieira, J. Pecchia, B.Gursoy, (2019) Mycelium-based bio-composites for architecture: Assessing the effects of cultivation factors on compressive strength. Mater. Res. Innov, 2, 505-514. http://dx.doi.org/10.5151/proceedings-ecaadesigradi2019_465
E. Elsacker, S. Vandelook, A. Van Wylick, J. Ruytinx, L. De Laet, E.A. Peeters, (2020) comprehensive framework for the production of mycelium-based lignocellulosic composites.Science of The Total Environment, 725, 138431. https://doi.org/10.1016/j.scitotenv.2020.138431
K. Joshi, M.K. Meher, K.M. Poluri, (2020) Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications." ACS Applied Bio Materials 3(4), 1884-1892. https://doi.org/10.1021/acsabm.9b01047
R.R. Menon, J. Luo, X. Chen, H. Zhou, Z. Liu, G. Zhou, N. Zhang, C. Jin, (2019) Screening of fungi for potential application of self-healing concrete. Scientific reports 9(1), 2075. https://doi.org/10.1038/s41598-019-39156-8
R. Konwarh, S.B. Palanisamy, P.K. Jogi, (2020) A mini review on prospects and challenges of harnessing fungi for concrete-crack healing. Material Science Research India, 17(2), 117-128.
J. Luo, X. Chen, J. Crump, H. Zhou, D.G. Davies, G. Zhou, N. Zhang, C. Jin, (2018) Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Construction and building materials, 164, 275-285. https://doi.org/10.1016/j.conbuildmat.2017.12.233
T. Vallas, L. Courard, (2017) Using nature in architecture: Building a living house with mycelium and trees. Frontiers of Architectural Research, 6(3), 318-328. https://doi.org/10.1016/j.foar.2017.05.003
K. Yang, (2020) Investigations of mycelium as a low-carbon building material.
S. Bartnicki-garcia, S.B.G, (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. 87-108. https://doi.org/10.1146/annurev.mi.22.100168.000511
A.P.J. Trinci, A.J. Collinge, (1975) Hyphal wall growth in Neurospora crassa and Geotrichum candidum. Microbiology, 91(2), 355-361. https://doi.org/10.1099/00221287-91-2-355
G. Lysek, (1984) the Ecology and Physiology of the Fungal Mycelium.
J.P. Larpent, (1974) Cytochalasiny a transportní fenomena v myceliu Saprolegnia monoïca Pringsheim. Biologia Plantarum, 16(4), 250-254. https://doi.org/10.1007/BF02921234
D.N. Pegler, (1996) Hyphal analysis of basidiomata. Mycological Research, 100(2), 129-142. https://doi.org/10.1016/S0953-7562(96)80111-0
H. Clémençon, (2004) Cytology and Plectology of the Hymenomycetes.
J. Webster, R. Weber, (2007) Introduction to fungi. Cambridge university press, 9(1).
J. Breitenbach, F. Kränzlin, (1986) Fungi of Switzerland, Vol. 2. Non gilled fungi-Heterobasidiomycetes, Aphyllophorales, Gasteromycetes. 412.
J.I. Prosser, (1979) A.P.J. Trinci. A model for hyphal growth and branching.Microbiology, 111(1), 153-164. https://doi.org/10.1099/00221287-111-1-153
M. Momany, (2002) Polarity in filamentous fungi: establishment, maintenance and new axes. Current opinion in microbiology, 5(6), 580-585. https://doi.org/10.1016/S1369-5274(02)00368-5
S. Vandelook, E. Elsacker, A. Van Wylick, L. De Laet, E. Peeters, (2021) Current state and future prospects of pure mycelium materials. Fungal biology and biotechnology, 8, 1-10. https://doi.org/10.1186/s40694-021-00128-1
M. Gustavsson, S.Y. Lee, (2016) Prospects of microbial cell factories developed through systems metabolic engineering. Microbial Biotechnology, 9(5), 610-617. https://doi.org/10.1111/1751-7915.12385
D. Meng, N. Mukhitov, D. Neitzey, M. Lucht, D.D. Schaak, C.A. Voigt, (2021) Rapid and simultaneous screening of pathway designs and chassis organisms, applied to engineered living materials. Metabolic Engineering, 66, 308-318. https://doi.org/10.1016/j.ymben.2021.01.006
P. Bradu, A. Biswas, C. Nair, S. Sreevalsakumar, M. Patil, S. Kannampuzha, A.G. Mukherjee, U.R. Wanjari, K. Renu, B. Vellingiri, A.V. Gopalakrishnan, (2023) RETRACTED ARTICLE: Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environmental Science and Pollution Research 30(60), 124488-124519. https://doi.org/10.1007/s11356-022-20024-4
D.H. Haft, J. Selengut, E.F. Mongodin, K.E. Nelson, (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS computational biology, 1(6), e60. https://doi.org/10.1371/journal.pcbi.0010060
J.A. Doudna, E. Charpentier, (2014) The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096
H. Zhang, X. Zhang, A. Geng. (2022) Construction of CRISPR-Cas9 genome editing platform for white-rot fungus Cerrena unicolor BBP6 and its effects on extracellular ligninolytic enzyme biosynthesis. Biochemical Engineering Journal, 185, 108527. https://doi.org/10.1016/j.bej.2022.108527
P.A.Wang, J.M. Zhang, J.J. Zhong. (2022) CRISPR-Cas9 assisted in-situ complementation of functional genes in the basidiomycete Ganoderma lucidum. Process Biochemistry, 121, 689-697. https://doi.org/10.1016/j.procbio.2022.08.015
S. Manan, M.W. Ullah, M. Ul-Islam, O.M. Atta, O. M, G. Yang, (2021) Synthesis and applications of fungal mycelium-based advanced functional materials. Journal of Bioresources and Bioproducts, 6(1), 1-10. https://doi.org/10.1016/j.jobab.2021.01.001
M. Andlar, T. Rezić, N. Marđetko, D. Kracher, R. Ludwig, B. Šantek, (2018) Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in life sciences, 18(11), 768-778.
R. Mazur, (2015) Mechanical properties of sheets comprised of mycelium: A paper engineering perspective. Diss. Environmental Resources Engineering.
W.M. Van Horn, B.F. Shema, W.H. Shockley, J.H. Conkey, (1957). U.S. Patent No. 2,811,442. Washington, DC: U.S. Patent and Trademark Office.
D.R. Askeland, P.P. Phulé, W.J. Wright, D.K. Bhattacharya, (2003) The science and engineering of materials, 357-374.
S. Travaglini, J. Noble, P.G. Ross, C.K.H. Dharan, (2013) Mycology matrix composites. Proceedings of the American Society for Composites—Twenty-Eighth Technical Conference, State College, PA, USA. 9-11.
K.J. Buschow, (2001) Encyclopedia of materials: science and technology. (No Title).
D.W. Green, J.E. Winandy, D.E. Kretschmann. Mechanical properties of wood. Wood handbook: wood as an engineering material. Madison, WI: USDA Forest Service, Forest Products Laboratory, 1999. General technical report FPL; GTR-113, (1999) 4.1-4.45.
F. Gauvin, Florent, I.J. Vette. (2020) Characterization of mycelium-based composites as foam-like wall insulation material.
O.P. Etinosa, (2019) Osayeme Precious. Design and testing of mycelium biocomposite. Diss.
Z. Zimele, I. Irbe, J. Grinins, O. Bikovens, A. Verovkins, D. Bajare, (2020) Novel mycelium-based biocomposites (Mbb) as building materials. Journal of Renewable Materials 8(9), 1067-1076. https://doi.org/10.32604/jrm.2020.09646
Y. Li, K.L. Pickering, (2009) The effect of chelator and white rot fungi treatments on long hemp fibre-reinforced composites. Composites science and technology 69(7-8), 1265-1270. https://doi.org/10.1016/j.compscitech.2009.02.037
N. Attias, O. Danai, N. Ezov, E. Tarazi, Y.J. Grobman, (2017) Developing novel applications of mycelium based bio-composite materials for design and architecture. Proceedings of building with biobased materials: best practice and performance specification, 1(10).
R.J.J. Lelivelt, G. Lindner, P. Teuffel, H. Lamers, (2015) The production process and compressive strength of mycelium-based materials. First International Conference on Bio-based Building Materials. 22-25 Clermont-Ferrand, France. 1-6.
H.I. Abdel-Shafy, M.S. Mansour, (2018) Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian journal of petroleum, 27(4), 1275-1290.
J. Maximino C. Ongpeng, E. Inciong, V. Sendo, C. Soliman, A. Siggaoat, (2020) Using waste in producing bio-composite mycelium bricks. Applied Sciences, 10(15), 5303. https://doi.org/10.3390/app10155303
M.A. Shakir, B. Azahari, Y. Yusup, M.F. Yhaya, A. Salehabadi, M.I. Ahmad, (2020) Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 65(2), 253-263.
M.P. Matos, J.L. Teixeira, B.L. Nascimento, S. Griza, F.S.R. Holanda, R.H. Marino, (2019) Production of biocomposites from the reuse of coconut powder colonized by Shiitake mushroom. Ciência e Agrotecnologia, 43, e003819. https://doi.org/10.1590/1413-7054201943003819
R. Liu, X. Li, L. Long, Y. Sheng, J. Xu, Y. Wang, (2020) Improvement of mechanical properties of mycelium/cotton stalk composites by water immersion. Composite Interfaces, 27(10), 953-966. https://doi.org/10.1080/09276440.2020.1716573
J.L. Teixeira, M.P. Matos, B.L. Nascimento, S. Griza, F.S.R. Holanda, R.H. Marino, (2018) Production and mechanical evaluation of biodegradable composites by white rot fungi. Ciência e Agrotecnologia, 42(6), 676-684. https://doi.org/10.1590/1413-70542018426022318
W. Sun, M. Tajvidi, C. Howell, C.G. Hunt, (2020) Functionality of surface mycelium interfaces in wood bonding. ACS Applied Materials & Interfaces, 12(51), 57431-57440. https://doi.org/10.1021/acsami.0c18165
C. Colmo, P. Ayres, (2020) 3d printed bio-hybrid structures: Investigating the architectural potentials of mycoremediation. In 38th eCAADe Conference (online) 2020: Anthropologic-Architecture and Fabrication in the cognitive age, 573-582, eCAADe. https://doi.org/10.52842/conf.ecaade.2020.1.573
V. Meyer, E.Y. Basenko, J.P. Benz, G.H. Braus, M.X. Caddick, M. Csukai, R.P. De Vries, D. Endy, J.C. Frisvad, N. Gunde-Cimerman, T. Haarmann, Y. Hadar, K. Hansen, R.I. Johnson, N.P. Keller, N. Krasevec, U.F. Mortensen, R. Perez, A.F.J. Ram, E. Record, P. Ross, V. Shapaval, C. Steiniger, H.V.D. Brink, J.V. Munster, O. Yarden, H.A. Wösten, (2020) Growing a circular economy with fungal biotechnology: a white paper. Fungal biology and biotechnology, 7(1), 5. https://doi.org/10.1186/s40694-020-00095-z
H. Vašatko, L. Gosch, J. Jauk, M. Stavric, (2022) Basic research of material properties of mycelium-based composites. Biomimetics, 7(2), 51. https://doi.org/10.3390/biomimetics7020051
L.H. Bell, D.H. Bell, (2017) Industrial noise control: Fundamentals and applications. CRC Press. https://doi.org/10.1201/9780203751008
H.S. Seddeq, (2009) Factors influencing acoustic performance of sound absorptive materials. Australian journal of basic and applied sciences, 3(4), 4610-4617.
M. Ren, F. Jacobsen, (1993) A method of measuring the dynamic flow resistance and reactance of porous materials. Applied Acoustics, 39(4), 265-276. https://doi.org/10.1016/0003-682X(93)90010-4
S. Amares, E. Sujatmika, T.W. Hong, R. Durairaj, H.S.H.B. Hamid, (2017) a review: characteristics of noise absorption material. Journal of Physics: Conference Series, IOP Publishing, 908(1).
B. Castagnede, A. Aknine, B. Brouard, V. Tarnow, (2000) Effects of compression on the sound absorption of fibrous materials. Applied acoustics, 61(2), 173-182. https://doi.org/10.1016/S0003-682X(00)00003-7
C.J. Hemond, (1983) Engineering acoustics and noise control. Prentice Hall.
T. Koizumi, N. Tsujiuchi, A. Adachi. (2002) The development of sound absorbing materials using natural bamboo fibers. WIT Transactions on the Built Environment, 59, 157-166.
F. Sun, P. Banks-Lee, H. Peng, (1993) Sound absorption in an anisotropic periodically layered fluid-saturated porous medium. Applied Acoustics, 39(1-2), 65.
A.M.O. Mohamed, E.K. Paleologos, F.M. Howari, (2021) Noise pollution and its impact on human health and the environment. Pollution assessment for sustainable practices in applied sciences and engineering. Butterworth-Heinemann, 975-1026. https://doi.org/10.1016/B978-0-12-809582-9.00019-0
V. Desarnaulds, E. Costanzo, A. Carvalho, B. Arlaud, (2025) Sustainability of acoustic materials and acoustic characterization of sustainable materials.Proceedings of the 12th international congress on sound and vibration.
J.P. Arenas, K. Sakagami, (2020) Sustainable acoustic materials. Sustainability, 12(16), 6540. https://doi.org/10.3390/su12166540
M. Jones, A. Mautner, S. Luenco, A. Bismarck, S. John, (2020) Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design, 187, 108397. https://doi.org/10.1016/j.matdes.2019.108397
M.G. Pelletier, G.A. Holt, J.D. Wanjura, E. Bayer, G. McIntyre, (2013) an evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Industrial Crops and Products, 51, 480-485. https://doi.org/10.1016/j.indcrop.2013.09.008
M.G. Pelletier, G.A. Holt, J.D. Wanjura, L. Greetham, G. McIntyre, E. Bayer, J. Kaplan-Bie, (2019) Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative. Industrial Crops and Products, 139, 111533. https://doi.org/10.1016/j.indcrop.2019.111533
R.L.S. Pierre Jr, D.J. Maguire, C.S. Automotive, (2004) The impact of A-weighting sound pressure level measurements during the evaluation of noise exposure. Conference NOISE-CON.
D.R. Feinberg, B.C. Jones, A.C. Little, D.M. Burt, D.I. Perrett, (2005) Manipulations of fundamental and formant frequencies influence the attractiveness of human male voices. Animal behaviour, 69(3), 561-568. https://doi.org/10.1016/j.anbehav.2004.06.012
M.J. Owren, M. Berkowitz, J.A. Bachorowski. (2007) Listeners judge talker sex more efficiently from male than from female vowels. Perception & psychophysics, 69(6), 930-941. https://doi.org/10.3758/BF03193930
P. Pongrácz, C. Molnár, A. Miklosi. (2006) Acoustic parameters of dog barks carry emotional information for humans. Applied Animal Behaviour Science, 100(3-4), 228-240. https://doi.org/10.1016/j.applanim.2005.12.004
U. Sandberg, (2003) the multi-coincidence peak around 1000 Hz in tyre/road noise spectra. Euronoise Naples, 89(1-8), 2019.
M. Jones, T. Huynh, C. Dekiwadia, F. Daver, S. John, (2017) Mycelium composites: a review of engineering characteristics and growth kinetics. Journal of Bionanoscience, 11(4), 241-257.
H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013
M. Jones, T. Bhat, E. Kandare, A. Thomas, P. Joseph, C. Dekiwadia, R. Yuen, S. John, J. Ma, C.H. Wang, (2018) Thermal degradation and fire properties of fungal mycelium and mycelium-biomass composite materials. Scientific reports, 8(1), 17583. https://doi.org/10.1038/s41598-018-36032-9
M.Jones, T. Bhat, T. Huynh, E. Kandare, R. Yuen, C.H. Wang, S. John, (2018) Waste‐derived low‐cost mycelium composite construction materials with improved fire safety. Fire and Materials, 42(7), 816-825. https://doi.org/10.1002/fam.2637
J. Alongi, R.A. Carletto, F. Bosco, F. Carosio, A. Di Blasio, F. Cuttica, V. Antonucci, M. Giordano, G. Malucelli, (2014) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polymer degradation and stability 99, 111-117. https://doi.org/10.1016/j.polymdegradstab.2013.11.016
P. Juillion, G. Lopez, D. Fumey, V. Lesniak, M. Génard, G. Vercambre, (2022) Shading apple trees with an agrivoltaic system: Impact on water relations, leaf morphophysiological characteristics and yield determinants. Scientia Horticulturae, 306, 111434. https://doi.org/10.1016/j.scienta.2022.111434
S. Al-Qahtani, M. Koç, R.J. Isaifan, (2023) Mycelium-based thermal insulation for domestic cooling footprint reduction: A review. Sustainability, 15(17), 13217. https://doi.org/10.3390/su151713217
M. Sydor, A. Bonenberg, B. Doczekalska, G. Cofta, (2021) Mycelium-based composites in art, architecture, and interior design: a review. Polymers, 14(1), 145.
F. Heisel, K. Schlesier, J. Lee, M. Rippmann, N. Saeidi, A. Javadian, D.E. Hebel, P. Block, (2017) Design of a load-bearing mycelium structure through informed structural engineering.Proceedings of the world congress on sustainable technologies (WCST),1-5.
Y. Xing, M. Brewer, H. El-Gharabawy, G. Griffith, P. Jones, (2018) Growing and testing mycelium bricks as building insulation materials. IOP conference series: earth and environmental science, 121, 022032
R.R. Menon, J. Luo, X. Chen, H. Zhou, Z. Liu, G. Zhou, C. Jin, (2019) Screening of fungi for potential application of self-healing concrete. Scientific reports, 9(1), 2075.
Q. Zhao, B. Zhang, H. Quan, R.C. Yam, R.K. Yuen, R.K. Li, (2009) Flame retardancy of rice husk-filled high-density polyethylene ecocomposites. Composites Science and technology, 69(15-16), 2675-2681.
M.G. Pelletier, G.A. Holt, J.D. Wanjura, A.J. Lara, A. Tapia-Carillo, G. McIntyre, E. Bayer, (2017) An evaluation study of pressure-compressed acoustic absorbers grown on agricultural by-products. Industrial crops and products, 95, 342-347. https://doi.org/10.1016/j.indcrop.2016.10.042
A.L.I.N.A. Butu, S. Rodino, B. Miu, M. Butu, (2020) Mycelium-based materials for the ecodesign of bioeconomy. Digest Journal of Nanomaterials and Biostructures, 15, 1129-1140.
S. Bitting, T. Derme, J. Lee, T. Van Mele, B. Dillenburger, P. Block, (2022) Challenges and opportunities in scaling up architectural applications of mycelium-based materials with digital fabrication. Biomimetics, 7(2), 44. https://doi.org/10.3390/biomimetics7020044
T.S. Lebbie, O.D. Moyebi, K.A. Asante, J. Fobil, M.N. Brune-Drisse, W.A. Suk, P.D. Sly, J. Gorman, D.O. Carpenter, (2021) E-waste in Africa: a serious threat to the health of children. International journal of environmental research and public health, 18(16), 8488. https://doi.org/10.3390/ijerph18168488
K.A. Asante, Y. Amoyaw-Osei, T. Agusa. (2019) E-waste recycling in Africa: risks and opportunities. Current Opinion in Green and Sustainable Chemistry, 18, 109-117. https://doi.org/10.1016/j.cogsc.2019.04.001
UNEP, (2018) Africa Waste Management Outlook. Alliance of Agricultural Information Services.
V. Forti, C.P. Balde, R. Kuehr, G. Bel, (2020) The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential.
Y.S. Bahn, C. Xue, A. Idnurm, J.C. Rutherford, J. Heitman, M.E. Cardenas, (2007) Sensing the environment: lessons from fungi. Nature Reviews Microbiology, 5(1), 57-69. https://doi.org/10.1038/nrmicro1578
C. Kung, (2005) A possible unifying principle for mechanosensation. Nature, 436(7051), 647-654.
M. McClure, (2021) what are the Causes and Effects of Water Pollution in Africa. Greenpeace.
J. Yabe, M. Ishizuka, T. Umemura, (2010) Current levels of heavy metal pollution in Africa." Journal of Veterinary Medical Science, 72(10), 1257-1263. https://doi.org/10.1292/jvms.10-0058
C. Letheby, (2021) Water Contamination in Africa.
A.O. Fayiga, M.O. Ipinmoroti, T. Chirenje, (2018) Environmental pollution in Africa. Environment, development and sustainability, 20, 41-73. https://doi.org/10.1007/s10668-016-9894-4
Sako, S. Semdé, U. Wenmenga, (2018) Geochemical evaluation of soil, surface water and groundwater around the Tongon gold mining area, northern Côte d’Ivoire, West Africa. Journal of African Earth Sciences, 145, 297-316.
S.J. Spiegel, (2009) Socioeconomic dimensions of mercury pollution abatement: Engaging artisanal mining communities in Sub-Saharan Africa. Ecological Economics, 68(12), 3072-3083. https://doi.org/10.1016/j.ecolecon.2009.07.015
E.J. Joner, R. Briones, C. Leyval, (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and soil, 226, 227-234. https://doi.org/10.1023/A:1026565701391
C. Gonzalez-Chavez, J. D'haen, J. Vangronsveld, J.C. Dodd, (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant and Soil, 240, 287-297. https://doi.org/10.1023/A:1015794622592
J. Dighton, (2009) Encyclopedia of Microbiology (3rd edition), Acadmic Press, San Diego, CA. 153–162. https://doi.org/10.1016/B978-012373944-5.00327-8
J. Purohit, A. Chattopadhyay, M.K. Biswas, N.K. Singh, (2018) Mycoremediation of agricultural soil: bioprospection for sustainable development. Mycoremediation and Environmental Sustainability, Fungal Biology. Springer, 2, 91-120. https://doi.org/10.1007/978-3-319-77386-5_4
A.T. Dao, J. Vonck, T.K. Janssens, H.T. Dang, A. Brouwer, T.E. de Boer, (2019) Screening white-rot fungi for bioremediation potential of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Industrial Crops and Products, 128, 153-161. https://doi.org/10.1016/j.indcrop.2018.10.059
C. Pandey, D. Prabha, Y.K. Negi. (2018) Mycoremediation of common agricultural pesticides. Mycoremediation and Environmental Sustainability, 2, 155-179. https://doi.org/10.1007/978-3-319-77386-5_6
T. Maes, F. Fiona Preston-Whyte. (2022) E-waste it wisely: lessons from Africa. SN Applied Sciences, 4(3), 72. https://doi.org/10.1007/s42452-022-04962-9
E.O. Akindele, C.G. Alimba, (2021) Plastic pollution threat in Africa: Current status and implications for aquatic ecosystem health. Environmental Science and Pollution Research, 28, 7636-7651. https://doi.org/10.1007/s11356-020-11736-6
V. Maphosa, M. Maphosa (2020) E-waste management in Sub-Saharan Africa: A systematic literature review. Cogent Business & Management, 7(1), 1814503. https://doi.org/10.1080/23311975.2020.1814503
United Nations, Tackling Global Water Pollution. UN Environment Programme.
Copyright (c) 2025 Joy Lincy S, Selvakumar Gopalsamy, Nandhini B, Mahalakshmi Sundarapandian, Suresh Balasubramanian

This work is licensed under a Creative Commons Attribution 4.0 International License.
Views: Abstract : 82 | PDF : 55
Plum Analytics