Damping of Alfvén Waves in Partially Ionized Plasmas Due to Ion-Neutral Collisions
Abstract
Alfvén waves play a crucial role in astrophysical plasmas, particularly in the interstellar medium (ISM) and the solar chromosphere, where partial ionization significantly influences wave dynamics. In such environments, collisions between ions and neutrals introduce a damping mechanism that affects wave propagation. In this paper, we derive an analytical expression for the damping rate of Alfvén waves due to ion-neutral collisions using a two-fluid approach. By incorporating the effects of ion-neutral drift and frictional heating, we obtain a modified dispersion relation that quantifies the damping rate as a function of plasma parameters such as ionization fraction, wave frequency, and collisional cross-sections. Our results demonstrate that for typical ISM and solar atmospheric conditions, ion-neutral collisions introduce significant dissipation, particularly at small wavelengths. These findings have important implications for the heating of partially ionized plasmas and the dissipation of MHD turbulence in astrophysical environments. Our results are consistent with recent numerical and observational studies on wave damping in partially ionized plasmas, reinforcing the role of ion-neutral interactions in shaping plasma dynamics.
Downloads
Metrics
References
B. De Pontieu, P.C.H. Martens, H.S. Hudson, Chromospheric Damping of Alfvén Waves. Astrophysical Journal, 558, (2001) 859-871. https://sssdoi.org/10.1086/322408
E. Khomenko, M. Collados, Wave Propagation and Damping in Partially Ionized Plasmas: Application to the Solar Atmosphere. Astrophysical Journal, 747, (2012) 87. https://doi.org/10.1088/0004-637X/747/2/87
R. Soler, M. Carbonell, J.L. Ballester, J. Terradas, Damping of Alfvén Waves in Partially Ionized Plasmas: Effect of Helium. Astrophysical Journal, 767, (2013) 171. https://doi.org/10.1088/0004-637X/767/2/171
S. Xu, A. Lazarian, H. Yan, Damping of MHD Turbulence in Partially Ionized Plasmas: Implications for the Interstellar Medium. Astrophysical Journal, 826, (2016) 166. https://doi.org/10.3847/0004-637X/826/2/166
Seta, A., Federrath, C., & Gupta, A. (2018). Ion-neutral Damping of Alfvén Waves in the Multi-phase Interstellar Medium. Monthly Notices of the Royal Astronomical Society, 480, 5620-5632.
R.S. Klessen, S.C. Glover, Turbulence in the ISM and its Impact on Star Formation. Annual Review of Astronomy and Astrophysics, 54, (2016)1-49.
S.D. Grant, D.B. Jess, T.V. Zaqarashvili, C. Beck, H. Socas-Navarro, M.J. Aschwanden, P.H. Keys, D.J. Christian, S.J. Houston, R.L. Hewitt, Alfvén wave dissipation in the solar chromosphere. Nature Physics, 14(5), (2018) 480-483. https://doi.org/10.1038/s41567-018-0058-3
X.N. Bai, Magnetorotational Instability in Weakly Ionized Disks. Astrophysical Journal, 739, (2011) 50. https://doi.org/10.1088/0004-637X/739/1/50
G. Lesur, M.W. Kunz, S. Fromang, Non-Ideal MHD Effects in Protoplanetary Disks. Astronomy & Astrophysics, 566, (2014) A56. https://doi.org/10.1051/0004-6361/201423660
B. Burkhart, K. Stalpes, A. Lazarian, Interstellar Turbulence and Wave Dissipation. Astrophysical Journal, 805, (2015) 118. https://doi.org/10.1088/0004-637X/805/2/118
D.B. Jess, R.J. Morton, G. Verth, V. Fedun, S.D.T. Grant, I. Giagkiozis, Observational Evidence for Alfvén Wave Damping in the Solar Atmosphere. Space Science Reviews, 190, (2015) 103. https://doi.org/10.1007/s11214-015-0141-3
K.P. Reardon, S.R. Cranmer, Chromospheric Alfvén Waves Observed with IRIS. Astrophysical Journal, 852, (2018) 129.
O. Gressel, N.J. Turner, R.P. Nelson, C.P. McNally, Protoplanetary Disk Dead Zones. Astrophysical Journal, 801(2), (2015) 84. https://doi.org/10.1088/0004-637X/801/2/84
M.W. Kunz, G. Lesur, Ambipolar Diffusion in Astrophysical Disks: Implications for MRI and Accretion. Monthly Notices of the Royal Astronomical Society, 434(3), (2013) 2295. https://doi.org/10.1093/mnras/stt1171
B.P. Pandey, M. Wardle, Hall Diffusion and MHD Wave Damping in Weakly Ionized Plasmas. Monthly Notices of the Royal Astronomical Society, 385(4), (2008) 2269. https://doi.org/10.1111/j.1365-2966.2008.12998.x
J. Cho, A. Lazarian, Wave-Wave Coupling and Turbulence in the Interstellar Medium. Astrophysical Journal, 589(2), (2003) L77. https://doi.org/10.1086/376492
T.D. Arber, C.S. Brady, S. Shelyag, Impact of Temperature Variations on Plasma Wave Damping. Astronomy & Astrophysics, 587, (2016) A125.
E.N. Parker, (2007) Conversations on Electric and Magnetic Fields in the Cosmos. Princeton University Press. https://doi.org/10.1515/9781400847433
A. Brandenburg, K. Subramanian, Astrophysical Magnetic Fields and Dynamo Theory. Physics Reports, 417(1-4), (2005) 1-209. https://doi.org/10.1016/j.physrep.2005.06.005
E.R. Priest, (2014) Magnetohydrodynamics of the Sun. Cambridge University Press. https://doi.org/10.1017/CBO9781139020732
E.G. Zweibel, F. Heitsch, The Role of Magnetic Fields in Star Formation. Frontiers in Astronomy and Space Sciences, 6, (2019) 7.
J. Goodman, G. Xu, Self-gravitating Magnetorotational Turbulence in Accretion Disks. Astrophysical Journal, 432, (1994) 213. https://doi.org/10.1086/174562
M.S. Miesch, Large-scale Dynamics of the Convection Zone and Tachocline. Living Reviews in Solar Physics, 2, (2005) 1. https://doi.org/10.12942/lrsp-2005-1
J.F.Hawley, S.A. Balbus, J.M. Stone, A Magnetohydrodynamic Nonlinear Instability in Keplerian Disks. Astrophysical Journal, 440, (1995) 742. https://doi.org/10.1086/175311
A. Lazarian, E.T. Vishniac, Reconnection in a Weakly Stochastic Field and the Dynamics of Interstellar Turbulence. Astrophysical Journal, 517, (1999) 700-718. https://doi.org/10.1086/307233
L. Mestel, L. Spitzer, Star Formation in Magnetic Dust Clouds. Monthly Notices of the Royal Astronomical Society, 116, (1956) 503. https://doi.org/10.1093/mnras/116.5.503
R. Kulsrud, W.P. Pearce, The Effect of Wave-Particle Interactions on the Propagation of Cosmic Rays. Astrophysical Journal, 156, (1969) 445.
Copyright (c) 2024 Krishna Bulchandani, Pooja

This work is licensed under a Creative Commons Attribution 4.0 International License.
Views: Abstract : 13 | PDF : 12
Plum Analytics