Transverse Fluctuations and Their Effects on the Stable Functioning of Semiconductor Devices

  • Mallick S Department of Physics, St. Xavier’s College (Autonomous), Kolkata-700073, West Bengal, India
  • Panda B Department of Physics, St. Xavier’s College (Autonomous), Kolkata-700073, West Bengal, India
  • Sen A Department of Physics, St. Xavier’s College (Autonomous), Kolkata-700073, West Bengal, India
  • Majumdar A Department of Physics, St. Xavier’s College (Autonomous), Kolkata-700073, West Bengal, India
  • Ghosal R Department of Physics, St. Xavier’s College (Autonomous), Kolkata-700073, West Bengal, India
  • Chandra S Department of Physics, Government General Degree College, Kushmandi-733121, West Bengal, India.
  • Sharry Faculty of Natural Sciences, GNA University, Phagwara-144401, India.
  • Kaur B Faculty of Natural Sciences, GNA University, Phagwara-144401, India.
  • Nasrin S Department of Physics, Srishikshayatan College, Kolkata-700071, India.
  • Chatterjee P Department of Mathematics, Siksha Bhavana, Visva Bharati, Santiniketan, West Bengal-731235, India.
  • Myrzakulov R LN Gumilev Eurasian National University, Astana, Kazakstan.
Keywords: Semiconductor plasma, Quantum degeneracy, Transverse fluctuation, Simulation, Quantum Hydrodynamics model, RungeKutta method

Abstract

Semiconductor plasma is often found in chaotic unpredictable motion which shows some anomalous behaviors providing multiple challenges to work with the instabilities in a semiconductor device. Experimental studies have shown that these instabilities give rise to fluctuations and azimuthal non-uniformities, which are usually present in the semiconductor. The energy fluctuations have also been observed in some of the cases. In this paper, we have obtained the fluctuations in velocity field by integrating the linearized governing hydrodynamic equations with RungeKutta method of order four (RK4). Then, we have come up with a mathematical formulation, where these fluctuations can be obtained from a KdV family equation with homotopy-assisted symbolic simulation. We have also obtained the relative velocity between the solitary structures for different parameters. Finally, by giving a detailed explanation of the behavior of semiconductor devices, we can study the usefulness of formulating the plasma waves in the various regime, and predict their characteristics theoretically.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

I. Adamovich, S.D. Baalrud, A. Bogaerts, P.J.Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S. M. Thagard, H.-R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z.L. Petrovic, L.C. Pitchford, Y.-K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. Turner, M.C.M. van de Sanden, and A. Vardelle, The 2017 plasma roadmap: Low temperature plasma science and technology, Journal of Physics D: Applied Physics, 50(32) (2017) 1-40. https://doi.org/10.1088/1361-6463/aa76f5

F. Zutavern, A. Baca, W. Chow, M. Hafich, H. Hjalmarson, G. Loubriel, A. Mar, M. O’malley, and A. Vawter, Electron-hole plasmas in semiconductors,” in IEEE Conference Record - Abstracts. PPPS2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference, (2001) 352–. https://doi.org/10.1109/PPPS.2001.961051

N. R. Council, Plasma Processing and Processing Science. Washington, DC: The National Academies Press, 1995.

S. Tailor, S. Chandra, R. Mohanty, P. Soni, Energy transport during plasma enhanced surface coating mechanism: a mathematical approach, Advanced Materials Letters, 4(12) 2013 917–920. https://doi.org/10.5185/amlett.2013.5476

G. Loubriel, F. Zutavern, A. Baca, H. Hjalmarson, T. Plut, W. Helgeson, M. O’Malley, M. Ruebush, D. Brown, Photoconductive semiconductor switches, IEEE Transactions on Plasma Science, 25(2) 1997 124–130. https://doi.org/10.1109/27.602482

V.P. Georgiev, A. Sengupta, P. Maciazek, O. Badami, C. MedinaBailon, T. Dutta, F. Adamu-Lema, A. Asenov, Simulation of gated gaas-algaas resonant tunneling diodes for tunable terahertz communication applications, in 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), (2020) 241–244. https://doi.org/10.23919/SISPAD49475.2020.9241677

H. Haus, Noise in microwave transmission applications of gunn and impatt diodes – theoretical aspects of gunn and impatt diode noise, in 1975 IEEE-MTT-S International Microwave Symposium, (1975) 311–312.

A. Kumar, G. C. Ghivela, A. Supriya, S. R. Choudhury, J. Sengupta, A steady state analysis of boron nitride ddrimpatt diode, in 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP), (2019) 1–4. https://doi.org/10.1109/ICESIP46348.2019.8938381

K.I. Ohue, F. Kuroki, and T. Yoneyama, Analysis on locking characteristics of band-stop type of self-injection locked nrd guide gunn oscillator at 60 ghz, in 2009 Asia Pacific Microwave Conference, (2009) 2292–2295. https://doi.org/10.1109/APMC.2009.5385440

R. van Zyl, W. Perold, and R. Botha, “Multi-domain gunn diodes with multiple hot electron launchers: a new approach to mm wave gaasgunn oscillator optimization, in 1999 IEEE Africon. 5th Africon Conference in Africa (Cat. No.99CH36342), 2 (1999)1193–1196. https://doi.org/10.1109/AFRCON.1999.821949

S. Lu, Simulation of semiconductor manufacturing equipment and processes, in Proceedings of the 3rd World Congress on Mechanical, Chemical, and Material Engineering. (2017) 1-4. https://doi.org/10.11159/htff17.165

J. Sarkar, S. Chandra, and B. Ghosh, Resonant interactions between the fundamental and higher harmonic of positron acoustic waves in quantum plasma, Zeitschrift fur Naturforschung A, 75(10) (2020) 819–824. https://doi.org/10.1515/zna-2020-0012

S. Chandra, B. Ghosh, Modulational instability of electronacoustic waves in relativistically degenerate quantum plasma, Astrophysics and Space Science, 342(2), (2012) 417–424. https://doi.org/10.1007/s10509-012-1186-3

A. Singh, S. Chandra, Electron acceleration by ponderomotive force in magnetized quantum plasma, Laser and Particle Beams, 35(2) (2017) 252-258 https://doi.org/10.1017/S026303461700012X

A. Roychowdhury, S. Banerjee, S. Chandra, Stationary formation of dust-ion acoustic waves in degenerate dusty plasma at critical regime, The African Review of Physics, 15, (2021) 102-110.

H. Sahoo, S. Chandra, B. Ghosh, Dust acoustic solitary waves in magnetized dusty plasma with trapped ions and q-non-extensive electrons, The African Review of Physics, 10 (2015) 235-241.

S. Ballav, S. Kundu, A. Das, S. Chandra, Non-linear behaviour of dust acoustic wave mode in a dynamic dusty plasma containing negative dust particles and positrons, The African Review of Physics, 15 (2021).

I. Paul, S. Chandra, S. Chattopadhyay, S. Paul, W-type ionacoustic solitary waves in plasma consisting of cold ions and nonthermal electrons, Indian Journal of Physics, 90(10) (2016) 1195– 1205.https://doi.org/10.1007/s12648-016-0859-0

J. Goswami, S. Chandra, J. Sarkar, and B. Ghosh, Amplitude modulated electron acoustic waves with bipolar ions and kappa distributed positrons and warm electrons, Pramana-Journal of Physics, (2020) 1-10. https://doi.org/10.1007/s12043-021-02085-1

A. Maiti, S. Chowdhury, P. Singha, S. Ray, R. Dasgupta, S. Chandra, Study of small amplitude ion-acoustic bunched solitary waves in a plasma with streaming ions and thermal electrons, The African Review of Physics, 15 (2021) 97-101.

J. Sarkar, J. Goswami, S. Chandra, B. Ghosh, Study of ionacoustic solitary wave structures in multi-component plasma containingpositive and negative ions and q-exponential distributed electron beam, Laser and Particle Beams, 35(4) (2017) 641-647. https://doi.org/10.1017/S0263034617000593

J. Goswami, S. Chandra, J. Sarkar, B. Ghosh, Electron acoustic solitary structures and shocks in dense inner magnetosphere finite temperature plasma, Radiation Effects and Defects in Solids, 175(9-10) (2020) 961–973, https://doi.org/10.1080/10420150.2020.1799373

V.N. Tsytovich, (1970), Nonlinear Effects in Plasma, Springer US. https://doi.org/10.1007/978-1-4684-1788-3

S. Chandra, S. N. Paul, B. Ghosh, Linear and non-linear propagation of electron plasma waves in quantum plasma, Indian Journal of Pure and Applied Physics, 50 (2012) 314-319.

T. Ghosh, S. Pramanick, S. Sarkar, A. Dey, S. Chandra, Chaotic scenario in three-component fermi plasma, The African Review of Physics, 15( 2021).

C. Das, S. Chandra, B. Ghosh, Nonlinear interaction of intense laser beam with dense plasma, Plasma Physics and Controlled Fusion, 63(1) 2020. https://doi.org/10.1088/1361-6587/abc732

S. Dey, D. Maity, A. Ghosh, P. Samanta, A. De, S. Chandra, Chaotic excitations of rogue waves in stable parametric region for highly-energetic pair plasmas, The African Review of Physics, 15 (2021) 33-44. https://doi.org/10.48550/arXiv.2204.04682

M. Ghosh, K. Sharry, D. Dutta, S. Chandra, Propagation of rogue waves and cnoidal waves formations through low frequency plasma oscillations, The African Review of Physics, 15 (2021) 63-74.

J. Weiland , H. Wilhelmsson, Coherent non-linear interaction of waves in plasmas, Oxford Pergamon Press International Series on Natural Philosophy, 88 (1977).

M. Kono, M.M. Skoric, Nonlinear interactions in plasmas, ´ in Nonlinear Physics of Plasmas. Springer Berlin Heidelberg, (2010) 113–149. https://doi.org/10.1007/978-3-642-14694-7_5

A.K. Singh, S. Chandra, Second harmonic generation in high density plasma, The African Review of Physics, 12 ( 2018) 84-89.

P. Samanta, A. De, S. Dey, D. Maity, A. Ghosh, S. Chandra, Nonlinear excitations in dust-ion acoustic waves and the formation of rogue waves in stable parametric region in a 3-component degenerate plasma, The African Review of Physics, 15 (2021)10-17.

A. A. Bulgakov, O. V. Shramkova, Nonlinear interaction of waves in semiconductor plasma, Journal of Physics D: Applied Physics, 40(19) (2007) 5896–5901. https://doi.org/10.1088/0022-3727/40/19/017

S. Chandra, C. Das, J. Sarkar, Evolution of nonlinear stationary formations in a quantum plasma at finite temperature, Zeitschrift fur Naturforschung A, 76(4) (2021) 329-347. https://doi.org/10.1515/zna-2020-0328

B. Liu, J. Goree, V.E. Fortov, A.M. Lipaev, V.I. Molotkov, O.F. Petrov, G.E. Morfill, H.M. Thomas, H. Rothermel, and A.V. Ivlev, Transverse oscillations in a single-layer dusty plasma under microgravity, Physics of Plasmas, 16(8) 2009. https://doi.org/10.1063/1.3204638

V.V. Mitin, N.Z. Vagidov, Instabilities And Fluctuations In Semiconductor Solid-State Plasma, Noise in Physical Systems and 1/F Fluctuations, (1997) 293–296. https://doi.org/10.1142/9789812811165_0066

S. Chandra , B. G. Jit Sarkar, Chinmay Das, Self-interacting stationary formations in plasmas under externally controlled fields, Plasma Physics Reports, 47 (2021) 306–317. https://doi.org/10.1134/S1063780X21030041

C.T. Santis, Y. Vilenchik, N. Satyan, G. Rakuljic, A. Yariv, Quantum control of phase fluctuations in semiconductor lasers, Proceedings of the National Academy of Sciences, 115(34) (2018) 7896–7904. https://doi.org/10.1073/pnas.1806716115

S. Chandra, J. Goswami, J. Sarkar, C. Das, Analytical and simulation studies of forced kdv solitary structures in a two-component plasma, Journal of the Korean Physical Society, 76 (2020) 469–478. https://doi.org/10.3938/jkps.76.469

A. Mukhopadhyay, D. Bagui, S. Chandra, Electrostatic shock fronts in two-component plasma and its evolution into rogue wave type solitary structures, The African Review of Physics, 15 (2021) 25-32.doi

S. Ichimaru, Theory of fluctuations in a plasma, Annals of Physics (New York) (U.S.), 20(10) 1962. https://www.osti.gov/biblio/4799971

V. I. Gaman, P. N. Drobot, G. F. Karlova, Kink instability of the semiconductor plasma in silicon parallelepipeds, Russian Physics Journal, 35( 5) (1992) 481–486. https://doi.org/10.1007/bf00558864

A. Rasheed, M. Jamil, Siddique, F. Huda, Y. D. Jung, Beam excited acoustic instability in semiconductor quantum plasmas, Physics of Plasmas, 21(6) (2014) 1-4. https://doi.org/10.1063/1.4883224

D. Maude and J. Portal, Chapter 1 - parallel transport in low-dimensional semiconductor structures, in High Pressure in Semiconductor Physics II, ser. Semiconductors and Semimetals, 55 (1998) 1–43. https://doi.org/10.1016/S0080-8784(08)60079-4

S. Guha , N. Apte, Effect of transverse static magnetic field on stimulated brillouin scattering of electromagnetic wave, Pramana, 14(1) (1980) 25–33. https://doi.org/10.1007/bf02846460

E. Chesta, C. Lam, N. Meezan, D. Schmidt, M. Cappelli, A characterization of plasma fluctuations within a hall discharge, Plasma Science, IEEE Transactions on, 29(4) (2001)582–591. https://doi.org/10.1109/27.940951

E. Chesta, C. M. Lam, N.B. Meezan, D.P. Schmidt, M.A. Cappelli, A characterization of plasma fluctuations within a hall discharge, Plasma Science, IEEE Transactions on, 2(4) (2001) 582–591. http://dx.doi.org/10.1109/27.940951

P. A. Markowich, N. J. Mauser, The classical limit of a self-consistent quantum-vlasov equation in 3d, Mathematical Models and Methods in Applied Sciences, 3(1) (1993) 109–124. https://doi.org/10.1142/S0218202593000072

P. Markowich, P. Pietra, C. Pohl, Numerical approximation of quadratic observables of schrodinger-type equations in the semi-classical limit, NumerischeMathematik, 81 (1999) 595–630. https://doi.org/10.1007/s002110050406

O.C. Hellman, N. Herbots, D.C. Eng, A model for interdiffusion at metal semiconductor interfaces: Conditions for spiking, MRS Online Proceedings Library Archive, 148 (1989) 83-88. https://doi.org/10.1557/PROC-148-83

A.R. Gurijala, A.A. Chow, S. Khanna, N.C. Suresh, P.V. Penmatcha, S.V. Jandhyala, M. Sahal, W. Peng, T.N. Balasooriya, S. Ram, R. Culbertson, N. Herbots, Gaas to si direct wafer bonding at t 220° c in ambient air via nanobondingtm and surface energy engineering (see), Silicon, 14(2) 1-24 2022. https://doi.org/10.21203/rs.3.rs-425834/v1

S. Chandra, S.N. Paul, B. Ghosh, Electron-acoustic solitary waves in a relativistically degenerate quantum plasma with two-temperature electrons, Astrophysics and Space Science, 343(1) (2013) 213–219. https://doi.org/10.1007/s10509-012-1097-3

J. Goswami, J. Sarkar, S. Chandra, B. Ghosh, Shock fronts in dense laser-produced fermi plasma, in Internatinal E-conference on Plasma Theory and Simulations, Guru Ghasidas Central University, Bilaspur, India, no. Guru Ghasidas Central University, Bilasp. 10. http://dx.doi.org/10.13140/RG.2.2.32633.08803/1

W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Physical review, 140(4A) (1965) 1133– 1138. https://link.aps.org/doi/10. 1103/PhysRev.140.A1133

Z. A. Moldabekov, M. Bonitz, T.S. Ramazanov, Theoretical foundations of quantum hydrodynamics for plasmas, Physics of Plasmas, 25(3) (2018) 1-15. https://doi.org/10.1063/1.5003910

A. Ghosh, J. Goswami, S. Chandra, C. Das, Y. Arya, H. Chhibber, Resonant interactions and chaotic excitation in nonlinear surface waves in dense plasma, IEEE Transactions on Plasma Science, 50(6) (2022) 1524–1535. https://doi.org/10.1109/TPS.2021.3109297

S. Ballav, A. Das, S. Pramanick, S. Chandra, Plasma shock wave in gamma-ray bursts: Nonlinear phenomena and radiative process, IEEE Transactions on Plasma Science, 50(6) (2022) 1488–1494. https://doi.org/10.1109/TPS.2021.3112178

W. Yan, Hydrodynamic theory for quantum plasmonics: Linearresponse dynamics of the inhomogeneous electron gas, Physical Review B, 91(11) (2015) 1-16. https://link.aps.org/doi/10.1103/PhysRevB.91.115416

M. Akbari-Moghanjoughi, Hydrodynamic limit of wigner-poisson kinetic theory: Revisited, Physics of Plasmas, 22( 2) (2015). https://doi.org/10.1063/1.4907167

Z. Moldabekov, T. Schoof, P. Ludwig, M. Bonitz, T. Ramazanov, Statically screened ion potential and bohm potential in a quantum plasma, Physics of Plasmas, 22(10) 2015. https://doi.org/10.1063/1.4932051

C. Das, S. Chandra, B. Ghosh, Effects of exchange symmetry and quantum diffraction on amplitude modulated electrostatic waves in quantum magnetoplasma, Pramana-Journal of Physics, 95(2) 2021. https://doi.org/10.1007/s12043-021-02108-x

H. Sahoo, C. Das, S. Chandra, B. Ghosh, K. K. Mondal, Quantum and relativistic effects on the kdv and envelope solitons in ion-plasma waves, IEEE Transactions on Plasma Science, 50(6) (2022) 1610–1623.https://doi.org/10.1109/TPS.2021.3120077

J. Goswami, S. Chandra, B. Ghosh, Study of small amplitude ion-acoustic solitary wave structures and amplitude modulation in e– p–i plasma with streaming ions, Laser and Particle Beams, 36(1) 136–143 2018. https://doi.org/10.1017/S0263034618000058

F. Haas, A fluid model for quantum plasmas, in Quantum Plasmas. Springer New York, (2011) 65–93. https://doi.org/10.1007/978-1-4419-8201-8 4

A. Das, P. Ghosh, S. Chandra, V. Raj, Electron acoustic peregrine breathers in a quantum plasma with 1-d temperature anisotropy, IEEE Transactions on Plasma Science, 50(6) (2022) 1598–1609. https://doi.org/10.1109/TPS.2021.3113727

J. Goswami, S. Chandra, C. Das, J. Sarkar, Nonlinear wave-wave interaction in semiconductor junction diode, IEEE Transactions on Plasma Science, 50(6) (2022) 1508–1517. https://doi.org/10.1109/TPS.2021.3124454

J. Goswami, S. Chandra, B. Ghosh, Shock waves and the formation of solitary structures in electron acoustic wave in inner magnetosphere plasma with relativistically degenerate particles, Astrophysics and Space Science, 364(4) (2019) 1–7. https://doi.org/10.1007/s10509-019-3555-7

J. Sarkar, S. Chandra, A. Dey, C. Das, A. Marick, P. Chatterjee, Forced kdv and envelope soliton in magnetoplasma with kappa distributed ions, IEEE Transactions on Plasma Science, 50(6) (2022) 1565–1578. https://doi.org/10.1109/TPS.2022.3140318

S. Sarkar, A. Sett, S. Pramanick, T. Ghosh, C. Das, S. Chandra, Homotopy study of spherical ion-acoustic waves in relativistic degenerate galactic plasma, IEEE Transactions on Plasma Science, 50(6) (2022)1477–1487. https://doi.org/10.1109/TPS.2022.3146441

Sharry, D. Dutta, M. Ghosh, S. Chandra, Magnetosonic shocks and solitons in fermi plasma with quasiperiodic perturbation, IEEE Transactions on Plasma Science, 50(6) (2022) 1585–1597. https://doi.org/10.1109/TPS.2022.3148183

A. Majumdar, A. Sen, B. Panda, R. GHOSH, S. Mallick, S. Chandra, Study of shock fronts and solitary profile in a weakly relativistic plasma and its evolution into an amplitude modulated envelop soliton, The African Review of Physics, 15 (2021)18-24.

S. Thakur, C. Das, S. Chandra, Stationary structures in a four component dense magnetoplasma with lateral perturbations, IEEE Transactions on Plasma Science, 50(6) (2022)1545–1556. https://doi.org/10.1109/TPS.2021.3133082

S. Chandra, J. Goswami, J. Sarkar, C. Das, B. Ghosh, D. Nandi, Formation of electron acoustic shock wave in inner magnetospheric plasma, Indian Journal of Physics, 96(12) (2021) 3413-3427. https://doi.org/10.1007/s12648-021-02276-x

A. Dey, S. Chandra, C. Das, S. Mandal, T. Das, Rogue wave generation through non-linear self interaction of electrostatic waves in dense plasma, IEEE Transactions on Plasma Science, 50(6) (2022) 1557–1564. https://doi.org/10.1109/TPS.2022.3143001

J. Goswami, S. Chandra, J. Sarkar, S. Chaudhuri, B. Ghosh, Collision-less shocks and solitons in dense laser-produced fermi plasma, Laser and Particle Beams, 38(1) (2020) 25-38. https://doi.org/10.1017/S0263034619000764

Shilpi, Sharry, C. Das, and S. Chandra, Study of quantum-electron acoustic solitary structures in fermi plasma with two temperature electrons, Springer Proceedings in Complexity, (2022) 63-83. https://doi.org/10.1007/978-3-030-99792-2_6

J. Sarkar, S. Chandra, J. Goswami, and B. Ghosh, Heliospheric two stream instability with degenerate electron plasma, Springer Proceedings in Complexity, (2022) 25-42. https://doi.org/10.1007/978-3-030-99792-2_3

S. Chandra, R. Banerjee, J. Sarkar, S. Zaman, C. Das, S. Samanta, F. Deeba, B. Dasgupta, Multistability studies on electron-acoustic wave in a magnetized plasma with supra-thermal ions, Journal of Astrophysics and Astronomy, 43(2) (2022) 1-71. https://doi.org/10.1007/s12036-022-09835-6

C. Das, S. Chandra, S. Kapoor, P. Chatterjee, Semi-lagrangian method to study nonlinear electrostatic waves in quantum plasma, IEEE Transactions on Plasma Science, 50(6) (2022) 1579–1584.https://doi.org/10.1109/TPS.2022.3158965

S. Chandra, S. Kapoor, D. Nandi, C. Das, D. Bhattacharjee, Bifurcation analysis of eaws in degenerate astrophysical plasma: Chaos and multistability, IEEE Transactions on Plasma Science, 50(6) (2022) 1495–1507. https://doi.org/10.1109/TPS.2022.3166694

G. Manna, S. Dey, J. Goswami, S. Chandra, J. Sarkar, A. Gupta, Formation of nonlinear stationary structures in ionospheric plasma, IEEE Transactions on Plasma Science, 50(6) (2022) 1464–1476. https://doi.org/10.1109/TPS.2022.3166685

S. Dey, S. Ghosh, D. Maity, A. De, S. Chandra, Two-stream plasma instability as a potential mechanism for particle escape from the venusian ionosphere, Pramana-Journal of Physics, 96(4) (2022) 1-8. https://doi.org/10.1007/s12043-022-02462-4

G. Shaikhova, B. Kutum, R. Myrzakulov, Periodic traveling wave, bright and dark soliton solutions of the (2+ 1)-dimensional complex modified korteweg-de vries system of equations by using three different methods, AIMS MATHEMATICS, 7(10) (2022) 18948–18970. https://doi.org/10.3934/math.20221043

F. Haas, (2011 ), Electromagnetic quantum plasmas, in Quantum Plasmas. Springer New York, 109–131. https://doi.org/10.1007/978-1-4419-8201-8 6

S.A. Khan, M. Bonitz, (2013) Quantum hydrodynamics, Plasma Physics. https://doi.org/10.48550/arXiv.1310.0283

I. Hutchinson, J. Freidberg, (2003) Introduction To Plasma Physics I, MIT open courseware.

N. Crouseilles, P.A. Hervieux, G. Manfredi, Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films, Physical Review B, 78(15) (2008) 1-11. https://link.aps.org/doi/10.1103/PhysRevB.78.155412

A.A. Khan, M. Jamil, A. Hussain, Wake potential with exchange-correlation effects in semiconductor quantum plasmas, Physics of Plasmas, 22(9) (2015). https://doi.org/10.1063/1.4929862

S.A. Khan S. Hassan, Effects of electron exchangecorrelation potential on electrostatic oscillations in single-walled carbon nanotubes, Journal of Applied Physics, 115(20) 2014. https://doi.org/10.1063/1.4878936

S. Chandra, B. Ghosh, Non-linear propagation of electrostatic waves in relativistic fermi plasma with arbitrary temperature, Indian Journal of Pure and Applied Physics, 51(9) (2013) 627-633.

D.V. Schroeder, (1999), Degenerate Fermi gases, Addison Wesley Longman, 271–275.

M. Gershenson, (2007) Degenerate fermi gas, Gershenson Lab,

M. Chatterjee, M. Dasgupta, P. DAS, M. Halder, S. Chandra, Study of dynamical properties in shock & solitary structures and its evolutionary stages in a degenerate plasma, The African Review of Physics, 15 (2021).

C.C. Perelman, Bohm's potential, classical/quantum duality and repulsive gravity, Physics Letters B, 788 (2029) 546–551. https://doi.org/10.1016/j.physletb.2018.11.013

D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables. i, Physics Review, 85(2) (1952) 166–179. https://link.aps.org/doi/10.1103/PhysRev.85.166

D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables. ii, Physical Review Journals Archive, 85 (1952) 180–193. https://doi.org/10.1103/PhysRev.85.180

X.Z. Tang, Z. Guo, Bohm criterion and plasma particle/power exhaust to and recycling at the wall, Nuclear Materials and Energy, 12 (2017) 1342–1347. https://doi.org/10.1016/j.nme.2017.05.011

S.A. Hojman, F. A. Asenjo, H. M. Moya-Cessa, F. Soto-Eguibar, Bohm potential is real and its effects are measurable, Optik, 231 (2021) 1-4. https://doi.org/10.1016/j.ijleo.2021.166341

E. Santamato, F.D. Martini, Weyl-invariant derivation of diract equation from scalar tensor fields in curved space-time, journal name (2021) 1-16. https://doi.org/10.48550/arXiv.2103.02312

C.C. Perelman, Bohm’s potential, classical/quantum duality and repulsive gravity, Physics Letters B, 788 (2019) 546–551. . https://doi.org/10.1016/j.physletb.2018.11.013

D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables. ii, Physics Review, 85(2) (1952) 180–193. https://link.aps.org/doi/10.1103/PhysRev.85.180

J. Sarkar, S. Chandra, J. Goswami, C. Das, B. Ghosh, Growth of rt instability at the accreting magnetospheric boundary of neutron stars, in AIP Conference Proceedings, 2319(1) (2021) https://doi.org/10.1063/5.0037017

S. Ghosh, S. Saha, T. Chakraborty, K. Sadhukhan, R. Bhanja, S. Chandra, Linear and non-linear properties of electron acoustic waves in a viscous plasma,The African Review of Physics, 15 (2021) 90-96.

J. Goswami, S. Chandra, J. Sarkar, B. Ghosh, Quantum two stream instability in a relativistically degenerate magnetised plasma, in AIP Conference Proceedings, 2319(1) (2021) 1-4.https://doi.org/10.1063/5.0037003

S. Choudhury, T. Das, M. K. Ghorui, P. Chatterjee, The effect of exchange-correlation coefficient in quantum semiconductor plasma in presence of electron-phonon collision frequency, Physics of Plasmas, 23(6) (2016). https://doi.org/10.1063/1.4953563

C. Das, S. Chandra, B. Ghosh, Amplitude modulation and soliton formation of an intense laser beam interacting with dense quantum plasma: Symbolic simulation analysis, Contributions to Plasma Physics, 60(8) (2020). https://doi.org/10.1002/ctpp.202000028

S. Singla, S. Chandra, N. Saini, Simulation study of dust magnetosonic excitations in a magnetized dusty plasma, Chinese Journal of Physics, 85 (2023) 524-533. https://doi.org/10.1016/j.cjph.2023.06.014

B. Ghosh, S. Chandra, S. Paul, Amplitude modulation of electron plasma waves in a quantum plasma, Physics of plasmas, 18 (2011) 1-5. https://doi.org/10.1063/1.3533670

J. Sarkar, S. Chandra, J. Goswami, B. Ghosh, Formation of solitary structures and envelope solitons in electron acoustic wave in inner magnetosphere plasma with suprathermal ions, Contributions to Plasma Physics, 60(7) (2020). https://doi.org/10.1002/ctpp.201900202

Published
2023-05-30
How to Cite
S, M., B, P., A, S., A, M., R, G., S, C., Sharry, B, K., S, N., P, C., & R, M. (2023). Transverse Fluctuations and Their Effects on the Stable Functioning of Semiconductor Devices. Frontiers in Advanced Materials Research, 5(1), 44-69. https://doi.org/10.34256/famr2313
Section
Articles



Views: Abstract : 24 | PDF : 23

Plum Analytics