Influence of Transferred Arc Plasma Melting Time on the Formation of Phase and Microstructure of Mullite-Zirconia Composite

  • Amarnath P Department of Physics, Pondicherry University, Puducherry-605014, India https://orcid.org/0000-0003-3851-4421
  • Yugeswaran S Department of Physics, Pondicherry University, Puducherry-605014, India
  • Suresh K Department of Physics, Bharathiar University, Coimbatore-641046, Tamil Nadu, India
  • Navaneetha Pandiyaraj K Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, Tamil Nadu, India
Keywords: Mullite- Zirconia, Transferred Arc Plasma, Plasma Melting

Abstract

Transferred arc plasma is an effective and simple technique to synthesis a high temperature reaction ceramic composite material. In this paper, 20 kW transferred arc plasma torch was used to synthesis mullite-zirconia composites through the solid-state reaction of 3:2 mole ratio of ball milled alumina and zircon powders.  Dissociation of zircon in a thermal plasma arc is utilized as to prepare mullite-zirconia composites. The ball milled samples are melted for 3, 6, 9 and 12 minutes in transferred arc plasma torch at 20 kW power level with 10 lpm of argon flow rate and cooled by air. The phase and microstructure of melted samples were determined from X-ray diffraction (XRD) and SEM images. The obtained results shows that the processing time significantly influence on the formation of phase and microstructure of the mullite- zirconia composite.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

H. Schneider, E. Eberhard, Thermal Expansion of Mullite, Journal of the American Ceramic Society, 73 (1990) 2073-2076. https://doi.org/10.1111/j.1151-2916.1990.tb05270.x

I.A. Aksay, D.M. Dabbs, M. Sarikaya, Mullite for Structural, Electronic, and Optical Applications, Journal of the American Ceramic Society, 74 (1991) 2358-2368. https://doi.org/10.1111/j.1151-2916.1991.tb06768.x

D.X. Li, W.J. Thompson, Kinetic mechanisms for mullite formation from sol-gel precursors, Journal of Materials Research, 5 (1990) 1963–1969. https://doi.org/10.1557/JMR.1990.1963

G. M. Anikumar, U.S. Hareesh, A.D. Damodaran, K.G.K. Warrier, Effect of seeds on the formation of sol-gel mullite, Ceramics International, 23 (1997) 537– 543. https://doi.org/10.1016/S0272-8842(96)00066-1

P.C. Dokko, J.A. Pask, K.S. Mazdiyasni, High-Temperature Mechanical Properties of Mullite Under Compression, Journal of the American Ceramic Society, 60 (1977) 150-155. https://doi.org/10.1111/j.1151-2916.1977.tb15492.x

K.A. Khor, Y. Li, Effects of mechanical alloying on the reaction sintering of ZrSiO4 and Al2O3, Materials Science and Engineering: A, 256 (1998) 271-279. https://doi.org/10.1016/S0921-5093(98)00807-7

J.S. Moya, M.I. Osendi, Effect of ZrO2 (ss) in mullite on the sintering and mechanical properties of mullite/ZrO2 composites, Journal of Materials Science Letters, 2 (1983) 599-601. https://doi.org/10.1007/BF00719870

E. Di Rupo, M.R. Anseau, R.J. Brook, Reaction sintering: correlation between densification and reaction, Journal of Materials Science, 14 (1979) 2924-2928. https://doi.org/10.1007/BF00611476

M. Holstrom, T. Chartier, P. Boch, Reaction-sintered ZrO2-mullite composites, Materials Science and Engineering: A, 109 (1989) 105-109. https://doi.org/10.1016/0921-5093(89)90572-8

V.S. Nagarajan, K.J. Rao, Crystallization studies of ZrO2−SiO2 composite gels, Journal of Materials Science, 24 (1989) 2140–2146. https://doi.org/10.1007/BF02385434

S.W. Wang, X.X. Huang, J.K. Guo, Mechanical properties and microstructure of ZrO2–SiO2 composite, Journal of Materials Science, 32 (1997) 197–201. https://doi.org/10.1023/A:1018556006201

W. Wei, J.W. Halloran, Transformation Kinetics of Diphasic Aluminosilicate Gels, Journal of the American Ceramic Society, 71 (1988) 581– 587. https://doi.org/10.1111/j.1151-2916.1988.tb05923.x

I.A. Aksay, J.A. Pask, The Silica-Alumina System: Stable and Metastable Equilibria at 1.0 Atmosphere, Science, 183 (1974) 69–71. https://doi.org/10.1126/science.183.4120.69

S. Sundaresan, I.A. Aksay, Mullitization of Diphasic Aluminosilicate Gels, Journal of the American Ceramic Society, 74 (1991) 2388–2392. https://doi.org/10.1111/j.1151-2916.1991.tb06773.x

C.E. Curtis, H.G. Sowman, Investigation of the Thermal Dissociation, Reassociation, and Synthesis of Zircon, Journal of the American Ceramic Society, 36 (1953) 190– 198. https://doi.org/10.1111/j.1151-2916.1953.tb12865.x

P. Doerner, L.J. Gauckler, H. Krieg, H.L. Lukas, G. Petzow, J. Weiss, (1987) Phase Diagrams for Ceramists, vol. VI, The American Ceramic Society, US, 188.

Published
2021-10-30
How to Cite
P, A., S, Y., K, S., & K, N. P. (2021). Influence of Transferred Arc Plasma Melting Time on the Formation of Phase and Microstructure of Mullite-Zirconia Composite. Frontiers in Advanced Materials Research, 3(2), 34-42. https://doi.org/10.34256/famr2124
Section
Articles



Views: Abstract : 137 | PDF : 111

Plum Analytics