Artificial Intelligence and Agricultural Biotechnology for Sustainable Farming Practices
Abstract
Agriculture is facing unprecedented challenges, including climate change, resource limitations, and the growing demand for sustainable practices. This article explores how the integration of biotechnology and artificial intelligence (AI) can address these issues. Biotechnology tools such as GMOs, CRISPR-Cas9, and synthetic biology enable the development of robust crops, enhanced pest resistance, and improved resource efficiency. AI complements these advancements through machine learning, predictive analytics, and robotics, facilitating better crop management, health monitoring, and yield prediction. The review highlights AI’s role in refining data analysis for genetic modifications and optimizing crop management strategies, showcasing the synergy between biotechnology and AI. Notable applications include the optimization of CRISPR technologies and the creation of disease-resistant crops. However, significant challenges remain, such as technical limitations, ethical concerns surrounding genetic modifications, and the economic impact on small-scale farmers. Addressing these challenges requires a comprehensive approach involving robust regulatory frameworks and stakeholder collaboration. Future directions include leveraging AI for precision breeding and integrating advancements in synthetic biology to enhance agricultural sustainability and productivity. Continued collaboration between biotechnology and AI will be essential to overcoming current limitations and achieving a sustainable future for agriculture.
Downloads
Metrics
References
J. Jung, M. Maeda, A. Chang, M. Bhandari, A. Ashapure, J. Landivar-Bowles, The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology, 70, (2021) 15-22. https://doi.org/10.1016/j.copbio.2020.09.003
P. Ashoka, B.R. Devi, N. Sharma, M. Behera, A. Gautam, A. Jha, G. Sinha, Artificial Intelligence in Water Management for Sustainable Farming: A Review. Journal of Scientific Research and Reports, 30(6), (2024) 511-525. https://doi.org/10.9734/jsrr/2024/v30i62068
H.M. Patel, The transformative role of artificial intelligence in modern agriculture. Review of Artificial Intelligence in Education, 4(00), (2023) e014-e014. https://doi.org/10.37497/rev.artif.intell.educ.v4i00.14
D. Shikha, K.A. Sindhura, M. Rastogi, B. Saritha, S.N. Satapathy, S. Srivastava, A.K. Kurdekar, A Review on Propelling Agricultural Practices with Biotechnology into a New Era. Journal of Advances in Biology & Biotechnology, 27(3), (2024) 99-111. https://doi.org/10.9734/jabb/2024/v27i3725
T. Li, Y. Yang, H. Qi, W. Cui, L. Zhang, X. Fu, X. He, M. Liu, P.F. Li, T. Yu, CRISPR/Cas9 therapeutics: progress and prospects. signal transduction and targeted therapy, 8, (2023) 36. https://doi.org/10.1038/s41392-023-01309-7
G.K. Walia, D. Chopra, B. Sidhu, Advancements and Challenges of Genetically Modified Crops in India: A Critical Overview. International Journal of Creative Research Thoughts (IJCRT), 12(9), (2024) 406- 427.
J.A. Anderson, M. Gipmans, S. Hurst, R. Layton, N. Nehra, J. Pickett, D.M. Shah, T. Lívio P.O. Souza Leena Tripathi Emerging agricultural biotechnologies for sustainable agriculture and food security. Journal of Agricultural and Food Chemistry, 64(2), (2016) 383-393. https://doi.org/10.1021/acs.jafc.5b04543
A.N. Yadav, R. Kumar, S. Kumar, V. Kumar, T. Sugitha, B. Singh, V.S. Chauahan, H.S.Dhaliwal, A.K. Saxena, Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. Journal of Applied Biology and Biotechnology, 5(6), (2017) 45-57. https://dx.doi.org/10.7324/JABB.2017.50607
A.O. Adewusi, O.F. Asuzu, T. Olorunsogo, C. Iwuanyanwu, E. Adaga, D.O. Daraojimba. AI in precision agriculture: A review of technologies for sustainable farming practices. World Journal of Advanced Research and Reviews, 21(1), (2024) 2276-2285. https://doi.org/10.30574/wjarr.2024.21.1.0314
J. Zha. Artificial Intelligence in Agriculture. In Journal of Physics: Conference Series, IOP Publishing, 1693 (2020) 012058.
E. Elbasi, N. Mostafa, Z. AlArnaout, A.I. Zreikat, E. Cina, G.Varghese, A. Shdefat, A.E. Topcu, W. Abdelbaki, S. Mathew, C. Zaki, Artificial intelligence technology in the agricultural sector: A systematic literature review. IEEE access, 11, (2022)171-202. https://doi.org/10.1109/ACCESS.2022.3232485
S. Sharma, K. Verma, P. Hardaha, Implementation of artificial intelligence in agriculture. Journal of Computational and Cognitive Engineering. 2(2), (2023) 155-162. https://doi.org/10.47852/bonviewJCCE2202174
M. Sheikh, F. Iqra, H. Ambreen, K.A. Pravin, M. Ikra, Y.S. Chung. Integrating artificial intelligence and high-throughput phenotyping for crop improvement. Journal of Integrative Agriculture, 23(6), (2024)1787-1802. https://doi.org/10.1016/j.jia.2023.10.019
J.T. O'Brien, C. Nelson, Assessing the risks posed by the convergence of artificial intelligence and biotechnology. Health Secur, 18(3), (2020) 219-227. https://doi.org/10.1089/hs.2019.0122
A. Taneja, G. Nair, M. Joshi, S. Sharma, S. Sharma, A.R. Jambrak, E.R. Soto, F.J. Barba, J. M. Castagnini, N. Leksawasdi, Y. Phimolsiripol, Artificial intelligence: Implications for the agri-food sector. Agronomy. 13(5), (2023) 1397. https://doi.org/10.3390/agronomy13051397
G.S. Mmbando, The use of artificial intelligence in the production of genetically modified (GM) crops: a recent promising strategy for enhancing the acceptability of GM products?. Discover Applied Sciences, 6(11), (2024) 1-12. https://doi.org/10.1007/s42452-024-06212-6
K. Marshall, (2023) Enhancing Crop Yields through CRISPR Technology: A Promising Approach for Sustainable Agriculture. Biochemistry and Molecular Biology.
V.E. Hillary, S.A. Ceasar, A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Molecular Biotechnology, 65(3), (2023) 311-325. https://doi.org/10.1007/s12033-022-00567-0
D. Zhang, F. Xu, F. Wang, L. Le, L. Pu, Synthetic biology and artificial intelligence in crop improvement. Plant Communications. 6(2), (2024) 101220.
S. Dixit, A. Kumar, K. Srinivasan, P.M.D. Vincent, N. Ramu Krishnan, Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Frontiers in Bioengineering and Biotechnology, 6(2), (2025) 1335901. https://doi.org/10.3389/fbioe.2023.1335901
A. Tzachor, M. Devare, B. King, S. Avin, S.Ó hÉigeartaigh, Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nature Machine Intelligence, 4(2), (2022) 104-109. https://doi.org/10.1038/s42256-022-00440-4
R. Dara, S.M. Hazrati Fard, J. Kaur, Recommendations for ethical and responsible use of artificial intelligence in digital agriculture. Frontiers in Artificial Intelligence, 5, (2022) 884192.
A.L. Harfouche, V. Petousi, R. Meilan, J. Sweet, T. Twardowski, A. Altman,Promoting ethically responsible use of agricultural biotechnology. Trends in Plant Science, 26(6), (2021) 546-559. https://doi.org/10.1016/j.tplants.2020.12.015
S. Das, M. Kaur, V. Chhabra, T. Nandi, P. Mishra, S. Ghosh. A Systematic Review of Artificial Intelligence: A Future Guide to Sustainable Agriculture. International Journal of Environment and Climate Change, 14(4), (2024) 562-573. https://doi.org/10.9734/ijecc/2024/v14i44139
M. Pathan, N. Patel, H. Yagnik, M. Shah Artificial cognition for applications in smart agriculture: A comprehensive review. Artificial Intelligence in Agriculture, 4, (2020) 81-95. https://doi.org/10.1016/j.aiia.2020.06.001
A.A. Mana, A, Allouhi, A. Hamrani, S. Rahman, I. el Jamaoui, K. Jayachandran, Sustainable AI-Based Production Agriculture: Exploring AI Applications and Implications in Agricultural Practices. Smart Agricultural Technology, 7, (2024) 100416. https://doi.org/10.1016/j.atech.2024.100416
Copyright (c) 2024 Kavitha K, Senthil Kumar R

This work is licensed under a Creative Commons Attribution 4.0 International License.
Views: Abstract : 12 | PDF : 14
Plum Analytics