Preliminary observation of bacterial biofilm communities on plastic litters and their surface degradation in two coastal areas of Tuticorin, India

  • Shelciya S Suganthi Devadason Marine Research Institute, Affiliated to Manonmaniam Sundaranar University, Tuticorin, Tamil Nadu, India.
  • Immaculate Jeyasanta K Suganthi Devadason Marine Research Institute, Affiliated to Manonmaniam Sundaranar University, Tuticorin, Tamil Nadu, India.
  • Glen Esmeralda V Suganthi Devadason Marine Research Institute, Affiliated to Manonmaniam Sundaranar University, Tuticorin, Tamil Nadu, India.
  • Jamila Patterson Suganthi Devadason Marine Research Institute, Affiliated to Manonmaniam Sundaranar University, Tuticorin, Tamil Nadu, India.
Keywords: Plastic Litters, Biofilm, Bacteria, Degradation, Water, Sediment

Abstract

The accumulation of plastic litter in the marine environment is a growing ecological concern. Microorganisms can create a biofilm on the surface of plastic litters making them more hazardous. Although plastics are difficult to biodegrade, they can act as substrate for microorganism attachment. To investigate this problem, biofilm coated plastic litters such as covers, films and ropes were collected randomly from Muthunagar and Inigonagar in Tuticorin coastal areas and analysed using FTIR-ATR. The spectra obtained demonstrate the presence of Polyethylene (PE), Polypropylene (PP), Polystyrene (PS) and Polyamide (PA). The concentration of biofilm formed on the surface of plastics is higher in Inigonagar compared to Muthunagar coastal area. Investigations were also conducted into the bacterial development on the plastic surface and in the surrounding water and sediment. Several bacterial communities including human pathogens namely Faecal coliform, E. coli, Salmonella sp., Streptococcus sp., Staphylococcus sp., Pseudomonas sp., Bacillus sp., Klebsiella sp., and Vibrio sp. were found to be associated with the collected plastic litters. We confirmed the weathering of plastic litters by carbonyl and vinyl peaks formation. According to the Carbonyl Index values plastic litters collected from Inigonagar exhibit higher degree of degradation compared to Muthunagar coastal areas. The present study could provide significant baseline information for both plastic pollution and biofilm composition in Muthunagar and Inigonagar coastal areas.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Geyer, R., Jambeck, J.R., & Law, K.L. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

Horton, A.A., & Dixon, S.J. (2018). Microplastics: An introduction to environmental transport processes. Wiley Interdisciplinary Reviews: Water, 5(2), e1268. https://doi.org/10.1002/wat2.1268

Haram, L.E., Carlton, J.T., Ruiz, G.M., & Maximenko, N.A. (2020). A plasticene lexicon. Marine Pollution Bulletin, 150, 110714. https://doi.org/10.1016/j.marpolbul.2019.110714

UNEP, (2017). Clean seas: more than 800 people pledge to stop using cosmetics containing microbeads.

Jacobsen, J.K., Massey, L., & Gulland, F. (2010). Fatal ingestion of floating net debris by two sperm whales (Physeter macrocephalus). Marine Pollution Bulletin, 60(5), 765-767. https://doi.org/10.1016/j.marpolbul.2010.03.008

Provencher, J.F., Gaston, A.J, Mallory, M.L., O’hara, P.D., & Gilchrist, H.G. (2010). Ingested plastic in a diving seabird, the thick-billed murre (Uria lomvia), in the eastern Canadian Arctic. Marine Pollution Bulletin, 60(9), 1406-1411. https://doi.org/10.1016/j.marpolbul.2010.05.017

Teuten, E.L., Rowland, S.J., Galloway, T.S., & Thompson, R.C. (2007). Potential for plastics to transport hydrophobic contaminants. Environmental science & technology, 41(22), 7759-7764. https://doi.org/10.1021/es071737s

Zarfl, C., & Matthies, M. (2010). Are marine plastic particles transport vectors for organic pollutants to the Arctic?. Marine Pollution Bulletin, 60(10), 1810-1814. https://doi.org/10.1016/j.marpolbul.2010.05.026

Derraik, J.G. (2002). The pollution of the marine environment by plastic debris: a review. Marine pollution bulletin, 44(9), 842-852. https://doi.org/10.1016/S0025-326X(02)00220-5

Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha, M., & Ward, M. W. (2011). Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Marine pollution bulletin, 62(8), 1683-1692. https://doi.org/10.1016/j.marpolbul.2011.06.004

Wang, F., Wong, C.S., Chen, D., Lu, X., Wang, F., & Zeng, E.Y. (2018). Interaction of toxic chemicals with microplastics: a critical review. Water research, 139, 208-219. https://doi.org/10.1016/j.watres.2018.04.003

Radisic, V., Nimje, P.S., Bienfait, A.M., & Marathe, N.P. (2020). Marine plastics from Norwegian west coast carry potentially virulent fish pathogens and opportunistic human pathogens harboring new variants of antibiotic resistance genes. Microorganisms, 8(8), 1200. https://doi.org/10.3390/microorganisms8081200

Imran, M., Das, K.R., Naik, M.M. (2019). Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere, 215, 846-857. https://doi.org/10.1016/j.chemosphere.2018.10.114

Zettler, E.R., Mincer, T.J., & Amaral-Zettler, L.A. (2013). Life in the “plastisphere”: microbial communities on plastic marine debris. Environmental science & technology, 47(13), 7137-7146. https://doi.org/10.1021/es401288x

Pal, A., & Paul, A. (2008). Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian journal of microbiology, 48(1), 49-64. https://doi.org/10.1007/s12088-008-0006-5

Balcázar, J. L., Subirats, J., & Borrego, C. M. (2015). The role of biofilms as environmental reservoirs of antibiotic resistance. Frontiers in microbiology, 6, 1216. https://doi.org/10.3389/fmicb.2015.01216

Webster, N.S., & Negri, A.P. (2006). Site‐specific variation in Antarctic marine biofilms established on artificial surfaces. Environmental Microbiology, 8(7), 1177-1190. https://doi.org/10.1111/j.1462-2920.2006.01007.x

Webb, H.K., Crawford, R.J., Sawabe, T., & Ivanova, E.P. (2009). Poly (ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes and environments, 24(1), 39-42. https://doi.org/10.1264/jsme2.ME08538.

Lobelle, D., & Cunliffe, M. (2011). Early microbial biofilm formation on marine plastic debris. Marine pollution bulletin, 62(1), 197-200. https://doi.org/10.1016/j.marpolbul.2010.10.013

Keswani, A., Oliver, D.M., Gutierrez, T., & Quilliam, R.S. (2016). Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments. Marine environmental research, 118, 10-19. https://doi.org/10.1016/j.marenvres.2016.04.006

De Tender, C. A., Devriese, L. I., Haegeman, A., Maes, S., Ruttink, T., & Dawyndt, P. (2015). Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environmental science & technology, 49(16), 9629-9638. https://dx.doi.org/10.1021/acs.est. 5b01093

Frère, L., Maignien, L., Chalopin, M., Huvet, A., Rinnert, E., Morrison, H., & Paul-Pont, I. (2018). Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environmental pollution, 242, 614-625. https://dx.doi.org/10.1016/j.envpol.2018.07.023

Parthasarathy, A., Tyler, A.C., Hoffman, M.J., Savka, M.A., & Hudson, A.O. (2019). Is plastic pollution in aquatic and terrestrial environments a driver for the transmission of pathogens and the evolution of antibiotic resistance? https://doi.org/10.1021/acs.est.8b07287

Rasool, F. N., Saavedra, M. A., Pamba, S., Perold, V., Mmochi, A. J., Maalim, M., & Jelsbak, L. (2021). Isolation and characterization of human pathogenic multidrug resistant bacteria associated with plastic litter collected in Zanzibar. Journal of Hazardous Materials, 405, 124591. https://doi.org/10.1016/j.jhazmat.2020.124591

Kirstein, I.V., Wichels, A., Gullans, E., Krohne, G., & Gerdts, G. (2019). The plastisphere–uncovering tightly attached plastic “specific” microorganisms. PLoS One, 14(4), e0215859. https://doi.org/10.1371/journal.pone.0215859

Tokiwa, Y., Calabia, B. P., Ugwu, C. U., & Aiba, S. (2009). Biodegradability of plastics. International journal of molecular sciences, 10(9), 3722-3742. https://doi.org/10.3390/ijms10093722

Aneta, K.Urbanek., Waldemar, Rymowicz, Mironczuk, Aleksandra M., 2018. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 102, 7669–7678. https://doi.org/10.1007/s00253-018-9195-y

Degli-Innocenti, F. (2014). Biodegradation of plastics and ecotoxicity testing: when should it be done. Frontiers in microbiology, 5, 475. https://doi.org/10.3389/fmicb.2014.00475

Álvarez-Barragán, J., Domínguez-Malfavón, L., Vargas-Suárez, M., González-Hernández, R., Aguilar-Osorio, G., & Loza-Tavera, H. (2016). Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Applied and environmental microbiology, 82(17), 5225-5235. https://doi.org/10.1128/AEM.01344-16

Gómez-Méndez, L. D., Moreno-Bayona, D. A., Poutou-Pinales, R. A., Salcedo-Reyes, J. C., Pedroza-Rodríguez, A. M., Vargas, A., & Bogoya, J. M. (2018). Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PloS one, 13(9), e0203786. https://doi.org/10.1371/journal.pone.0203786

Rodrigues, A., Oliver, D. M., McCarron, A., & Quilliam, R. S. (2019). Colonisation of plastic pellets (nurdles) by E. coli at public bathing beaches. Marine pollution bulletin, 139, 376-380. https://doi.org/10.1371/journal.pone.0203786

APHA (1995). American Public Health A Standard method for the examination of water and wastewater, 19th edn. APHA, Washington, 1-541.

Krumbein, W.C., Pettijohn, F.J., (1938). Manual of Sedimentary Petrography. AppletonCentury Inc, New York.

Heiri, O., Lotter, A.F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of paleolimnology, 25(1), 101-110. https://doi.org/10.1023/A:1008119611481

Chércoles Asensio, R., San Andrés Moya, M., de la Roja, J.M., & Gómez, M. (2009). Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Analytical and bioanalytical chemistry, 395(7), 2081-2096. https://doi.org/10.1007/s00216-009-3201-2

Jung, M.R., Horgen, F.D., Orski, S.V., Rodriguez, V., Beers, K L., Balazs, G.H., & Lynch, J.M. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine pollution bulletin, 127, 704-716. https://doi.org/10.1016/j.marpolbul.2017.12.061

Bergey, D.H., (1994). Bergey's manual of determinative bacteriology. Lippincott Williams & Wilkins.

Lee, Y.H., Kang, B.K., Kim, H.D., Yoo, H.J., Kim, J.S., Huh, J.H., & Lee, D.J. (2009). Effect of hot pressing/melt mixing on the properties of thermoplastic polyurethane. Macromolecular Research, 17(8), 616-622. https://doi.org/10.1007/BF03218918

Xu, W., Yin, X., He, G., Zhao, J., & Wang, H. (2012). Photografted temperature-sensitive poly (N-isopropylacrylamide) thin film with a superfast response rate and an interesting transparent–opaque–transparent change in its deswelling process. Soft Matter, 8(11), 3105-3111. https://doi.org/10.1039/c2sm07404d

Hamouya, M., Mahir, A., & Idrissi, M. C. E. (2014). Natural ageing of stabilized and unstabilized LDPE films used as greenhouses covering materials: ATR-FTIR and SEM analysis. International Journal of Research in Engineering and Technology, 3(12), 12-19. https://doi.org/10.15623/ijret.2015.0401003

Wu, X., Pan, J., Li, M., Li, Y., Bartlam, M., & Wang, Y. (2019). Selective enrichment of bacterial pathogens by microplastic biofilm. Water research, 165, 114979. https://doi.org/10.1016/j.watres.2019.114979

Cunliffe, D., Smart, C. A., Alexander, C., & Vulfson, E.N. (1999). Bacterial adhesion at synthetic surfaces. Applied and environmental microbiology, 65(11), 4995-5002. https://doi.org/10.1128/AEM.65.11.4995-5002.1999

Sinde, E., & Carballo, J. (2000). Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: the influence of free energy and the effect of commercial sanitizers. Food Microbiology, 17(4), 439-447. https://doi.org/10.1006/fmic.2000.0339

Donlan, R.M. (2002). Biofilms: microbial life on surfaces. Emerging infectious diseases, 8 (9) 881–890. https://doi.org/10.3201/eid0809.020063

Roy, P.K., Ha, A.J.W., Mizan, M.F.R., Hossain, M.I., Ashrafudoulla, M., Toushik, S.H., & Ha, S. D. (2021). Effects of environmental conditions (temperature, pH, and glucose) on biofilm formation of Salmonella enterica serotype Kentucky and virulence gene expression. Poultry Science, 100(7), 101209. https://doi.org/10.1016/j.psj.2021.101209

Pommepuy, M., Hervio-Heath, D., Caprais, M.P., Gourmelon, M., Le Saux, J.C., & Guyader, F. L. (2005). Fecal contamination in coastal areas: an engineering approach. In Oceans and Health: Pathogens in the marine environment, Springer, Boston, 331-359. https://doi.org/10.1007/0-387-23709-7_14

Ashbolt, N.J., Grohmann, G.S., & Kueh, C.S.W. (1993). Significance of specific bacterial pathogens in the assessment of polluted receiving waters of Sydney, Australia. Water Science and Technology, 27(3-4), 449-452. https://doi.org/10.2166/wst.1993.0390

USEPA. (1999). Action plan for beaches and recretional waters. Office of Research and Development and Office of Water, Washington, DC

Amaral-Zettler, L.A., Zettler, E.R., Slikas, B., Boyd, G.D., Melvin, D.W., Morrall, C. E., & Mincer, T. J. (2015). The biogeography of the Plastisphere: implications for policy. Frontiers in Ecology and the Environment, 13(10), 541-546. https://doi.org/10.1890/150017

Burkhardt III, W., Calci, K.R., Watkins, W.D., Rippey, S.R., & Chirtel, S.J. (2000). Inactivation of indicator microorganisms in estuarine waters. Water Research, 34(8), 2207-2214. https://doi.org/10.1016/S0043-1354(99)00399-1

Beversdorf, L.J., Bornstein‐Forst, S.M., & McLellan, S.L. (2007). The potential for beach sand to serve as a reservoir for Escherichia coli and the physical influences on cell die‐off. Journal of applied microbiology, 102(5), 1372-1381. https://doi.org/10.1111/j.1365-2672.2006.03177.x

Bonilla, T.D., Nowosielski, K., Cuvelier, M., Hartz, A., Green, M., Esiobu, N., & Rogerson, A. (2007). Prevalence and distribution of fecal indicator organisms in South Florida beach sand and preliminary assessment of health effects associated with beach sand exposure. Marine pollution bulletin, 54(9), 1472-1482. https://doi.org/10.1016/j.marpolbul.2007.04.016

Hartz, A., Cuvelier, M., Nowosielski, K., Bonilla, T. D., Green, M., Esiobu, N., & Rogerson, A. (2008). Survival potential of Escherichia coli and enterococci in subtropical beach sand: implications for water quality managers. Journal of environmental quality, 37(3), 898-905. https://doi.org/10.2134/jeq2007.0312

Gerba, C.P., & McLeod, J.S. (1976). Effect of sediments on the survival of Escherichia coli in marine waters. Applied and environmental microbiology, 32(1), 114-120. https://doi.org/10.1128/aem.32.1.114-120.1976

Oshiro, R., & Fujioka, R. (1995). Sand, soil, and pigeon droppings: sources of indicator bacteria in the waters of Hanauma Bay, Oahu, Hawaii. Water Science and Technology, 31(5-6), 251-254. https://doi.org/10.2166/wst.1995.0617

Craig, D. L., Fallowfield, H. J., & Cromar, N. J. (2002). Comparison of decay rates of faecal indicator organisms in recreational coastal water and sediment. Water Science and Technology: Water Supply, 2(3), 131-138. https://doi.org/10.2166/ws.2002.0095

Whitman, R.L., & Nevers, M.B. (2003). Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach. Applied and environmental microbiology, 69(9), 5555-5562. https://doi.org/10.1128/AEM.69.9.5555-5562.2003

Bonilla, T.D., Nowosielski, K., Esiobu, N., McCorquodale, D.S., & Rogerson, A. (2006). Species assemblages of Enterococcus indicate potential sources of fecal bacteria at a south Florida recreational beach. Marine Pollution Bulletin, 52(7), 807-810. https://doi.org/10.1016/j.marpolbul.2006.03.004

McCormick, A., Hoellein, T.J., Mason, S.A., Schluep, J., & Kelly, J.J. (2014). Microplastic is an abundant and distinct microbial habitat in an urban river. Environmental science & technology, 48(20), 11863-11871. https://doi.org/10.1021/es503610r

Tavşanoglu, U.N., Başaran Kankılıc, G., Akca, G., Çırak, T., & Erdogan, S. (2020). Microplastics in a dam lake in Turkey: type, mesh size effect, and bacterial biofilm communities. Environmental Science and Pollution Research, 27(36), 45688-45698. https://doi.org/10.1007/s11356-020-10424-9

Oberbeckmann, S., Loeder, M. G., Gerdts, G., & Osborn, A. M. (2014). Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS microbiology ecology, 90(2), 478-492. https://doi.org/10.1111/1574-6941.12409

Kirstein, I.V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Löder, M., & Gerdts, G. (2016). Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Marine environmental research, 120, 1-8. https://doi.org/10.1016/j.marenvres.2016.07.004

Debroas, D., Mone, A., & Ter Halle, A. (2017). Plastics in the North Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders. Science of the total environment, 599, 1222-1232. https://doi.org/10.1016/j.scitotenv.2017.05.059

Jiang, P., Zhao, S., Zhu, L., & Li, D. (2018). Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Science of the total environment, 624, 48-54. https://doi.org/10.1016/j.scitotenv.2017.12.105

Farmer, J. J., Michael, J. J., Brenner, F. W., Cameron, D. N., Birkhead, K.M. (2015). Vibrio in Bergey’s Manual of Systematics of Archaea and Bacteria. 1–79. https://doi.org/10.1002/9781118960608.gbm01078

Quilliam, R.S., Jamieson, J., & Oliver, D.M. (2014). Seaweeds and plastic debris can influence the survival of faecal indicator organisms in beach environments. Marine pollution bulletin, 84(1-2), 201-207. https://doi.org/10.1016/j.marpolbul.2014.05.011

Oberbeckmann, S., Kreikemeyer, B., Labrenz, M. (2018). Environmental factors support the formation of specific bacterial assemblages on microplastics. Frontiers in microbiology, 8, 2709. https://doi.org/10.3389/fmicb.2017.02709

Stabili, L., & Cavallo, R.A. (2011). Microbial pollution indicators and culturable heterotrophic bacteria in a Mediterranean area (Southern Adriatic Sea Italian coasts). Journal of sea research, 65(4), 461-469. https://doi.org/10.1016/j.seares.2011.04.010

Türetken, P.S.Ç. (2021). Environment variables, composition and metabolic characteristics of culturable sediment bacteria isolated around Gökçeada Island, Aegean Sea, Turkey. Regional Studies in Marine Science, 42, 101613. https://doi.org/10.1016/j.rsma.2021.101613

CPCB, (1993). Criteria for Classification and Zoning of Coastal Waters (Sea Waters SW) - A Coastal Pollution Control Series: COPOCS/6/1993-CPCB. Central Pollution Control Board, New Delhi.

USEPA, (1986). Ambient Water Quality Criteria for Bacteria-1986. EPA440/5-84-002. United States Environmental Protection Agency, Washington DC.

HMSO, (1990) Fourth Report: Pollution of Beaches. vol. I House of Commons Environment Committee, Her Majesty's Stationary Office, London.

Sonia, G., & Lipton, A.P. (2012). Pathogenicity and antibiotic susceptibility of Vibrio species isolated from the captive–reared tropical marine ornamental blue damsel fish, Pomacentrus caeruleus (Quoy and Gaimard, 1825).

Lyons, M.M., Ward, J.E., Gaff, H., Hicks, R.E., Drake, J.M., & Dobbs, F.C. (2010). Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens. Aquatic Microbial Ecology, 60(1), 1-13. https://doi.org/10.3354/ame01417

Veerasingam, S., Saha, M., Suneel, V., Vethamony, P., Rodrigues, A.C., Bhattacharyya, S., & Naik, B.G. (2016). Characteristics, seasonal distribution and surface degradation features of microplastic pellets along the Goa coast, India. Chemosphere, 159, 496-505. https://doi.org/10.1016/j.chemosphere.2016.06.056

Singh, B., & Sharma, N. (2008). Mechanistic implications of plastic degradation. Polymer degradation and stability, 93(3), 561-584. https://doi.org/10.1016/j.chemosphere.2016.06.056

Costa, J.P.D., Duarte, A.C., & Rocha-Santos, T.A.P. (2017). Chapter. -1, microplastics occurrence, fate and behaviour in the environment. In Comprehensive Analytical Chemistrym, Elsevier, Cambridge.

Horton, A.A., Svendsen, C., Williams, R. J., Spurgeon, D. J., & Lahive, E. (2017). Large microplastic particles in sediments of tributaries of the river Thames, UK–abundance, sources and methods for effective quantification. Marine Pollution Bulletin, 114(1), 218–226. https://doi.org/10.1016/j.marpolbul.2016.09.004.

Ho, B.T., Roberts, T.K., & Lucas, S. (2018). An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Critical Reviews in Biotechnology, 38(2), 308-320. https://doi.org/10.1080/07388551.2017.1355293

Sudhakar, M., Doble, M., Murthy, P.S., & Venkatesan, R. (2008). Marine microbe-mediated biodegradation of low-and high-density polyethylenes. International Biodeterioration & Biodegradation, 61(3), 203-213. https://doi.org/10.1016/j.ibiod.2007.07.011

Sudhakar, M., Priyadarshini, C., Doble, M., Murthy, P.S., & Venkatesan, R. (2007). Marine bacteria mediated degradation of nylon 66 and 6. International Biodeterioration & Biodegradation, 60(3), 144-151. https://doi.org/10.1016/j.ibiod.2007.02.002

Balasubramanian, V., Natarajan, K., Hemambika, B., Ramesh, N., Sumathi, C.S., Kottaimuthu, R., & Rajesh Kannan, V. (2010). High‐density polyethylene (HDPE)‐degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Letters in applied microbiology, 51(2), 205-211. https://doi.org/10.1111/j.1472-765X.2010.02883.x

Sekiguchi, T., Saika, A., Nomura, K., Watanabe, T., Watanabe, T., Fujimoto, Y., & Kanehiro, H. (2011). Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly (ɛ-caprolactone)-degrading bacteria. Polymer Degradation and Stability, 96(7), 1397-1403. https://doi.org/10.1016/j.polymdegradstab.2011.03.004

Stark, N.M. and Matuana, L.M., 2004. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polymer degradation and stability, 86(1), pp.1-9.

Miranda, M.N., Sampaio, M.J., Tavares, P.B., Silva, A.M. and Pereira, M.F.R., 2021. Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors. Science of The Total Environment, 796, p.148914

Harshvardhan, K., & Jha, B. (2013). Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin, 77(1-2), 100-106. https://doi.org/10.1016/j.marpolbul.2013.10.025

Raghul, S.S., Bhat, S.G., Chandrasekaran, M., Francis, V., & Thachil, E.T. (2014). Biodegradation of polyvinyl alcohol-low linear density polyethylene-blended plastic film by consortium of marine benthic vibrios. International Journal of Environmental Science and Technology, 11(7), 1827-1834. https://doi.org/10.1007/s13762-013-0335-8

Urbanek, A.K., Rymowicz, W., & Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied microbiology and biotechnology, 102(18), 7669-7678. https://doi.org/10.1007/s00253-018-9195-y

Reddy, R.M. (2008). Impact of soil composting using municipal solid waste on biodegradation of plastics.

Kirstein, I.V., Wichels, A., Krohne, G. and Gerdts, G., 2018. Mature biofilm communities on synthetic polymers in seawater-Specific or general?. Marine Environmental Research, 142, pp.147-154.

Published
2022-12-27
How to Cite
(1)
S, S.; K, I. J.; V, G. E.; Patterson, J. Preliminary Observation of Bacterial Biofilm Communities on Plastic Litters and Their Surface Degradation in Two Coastal Areas of Tuticorin, India. ijceae 2022, 4, 61-84.
Section
Articles



Views: Abstract : 69 | PDF : 78

Plum Analytics