Use of Modern Technology in The Automated Farming of Agriculture

  • Ganesh S Department of Agriculture Engineering, Sri Shakthi Institute of Engineering and Technology, Coimbatore- 641062, Tamil Nadu, India.
  • Chinnanchetty G Department of Agriculture Engineering, Sri Shakthi Institute of Engineering and Technology, Coimbatore- 641062, Tamil Nadu, India.
  • Ramasamy S Department of Agriculture Engineering, Sri Shakthi Institute of Engineering and Technology, Coimbatore- 641062, Tamil Nadu, India.
Keywords: IOT, Agriculture, Modern Agriculture, Systematic Review

Abstract

In order to improve efficiency, productivity, global market, and to reduce human intervention, time, and cost, there is a requirement for the introduction of new technology called the Internet of Things. The internet of things (IoT) is the network of interconnected devices that facilitates information transfer without human involvement. Agriculture and the Internet of Things work together to accomplish smart farming.   The current study is a systematic review on the use of IOT and other smart methods in agriculture.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdullah, S., Yadav, C. L., & Vatsya, S. (2013). Comparative efficacy of two synthetic pyrethroids against Rhipicephalus (boophilus) microplus. Acarina, 21(1), 84–87.

Adinarayana, J., Sudharsan, D., & Tripathy, A. K. (2009). Rinfol - A one stop information system for rural development - A prototype. ASABE - 7th World Congress on Computers in Agriculture and Natural Resources 2009, WCCA 2009, 440–446.

Afif, E., Matar, A., & Torrent, J. (1993). Availability of phosphate applied to calcareous soils of west Asia and North Africa. Soil Science Society of America Journal, 57(3), 756–760.

Ampatzidis, Y., Bellis, L. D., & Luvisi, A. (2017). iPathology: Robotic applications and management of plants and plant diseases. Sustainability (Switzerland), 9(6).

Bannayan, M., Sanjani, S., Alizadeh, A., Lotfabadi, S. S., & Mohamadian, A. (2010). Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Research, 118(2), 105–114.

Coulson, R. N., Joseph Folse, L., & Loh, D. K. (1987). Artificial intelligence and natural resource management. Science, 237(4812), 262–267.

DeJarnette, J. M., Nebel, R. L., & Marshall, C. E. (2009). Evaluating the success of sex-sorted semen in US dairy herds from on farm records. Theriogenology, 71(1), 49–58.

Diskin, M. G., & Sreenan, J. M. (2000). Expression and detection of oestrus in cattle. Reproduction Nutrition Development, 40(5), 481–491.

Hens, M., & Merckx, R. (2001). Functional characterization of colloidal phosphorus species in the soil solution of sandy soils. Environmental Science and Technology, 35(3), 493–500.

Junfeng, T., & Anyuan, D. (2010). An IEB-oriented ITS model combined data mining with 3S technologies. CCTAE 2010 - 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering, 2, 316–319.

Levy Jr., R. J., Bond, J. A., Webster, E. P., Griffin, J. L., & Linscombe, S. D. (2006). Effect of cultural practices on weed control and crop response in imidazolinone-tolerant rice. Weed Technology, 20(1), 249–254.

McQuiston, J. H., Garber, L. P., Porter-Spalding, B. A., Hahn, J. W., Pierson, F. W., Wainwright, S. H., Senne, D. A., Brignole, T. J., Akey, B. L., & Holt, T. J. (2005). Evaluation of risk factors for the spread of low pathogenicity H7N2 avian influenza virus among commercial poultry farms. Journal of the American Veterinary Medical Association, 226(5), 767–772.

Sabri, N., Aljunid, S. A., Ahmad, R. B., Malek, M. F., Yahya, A., Kamaruddin, R., & Salim, M. S. (2012). Smart prolong fuzzy wireless sensor-actor network for agricultural application. Journal of Information Science and Engineering, 28(2), 295–316.

Sabri, N., Aljunid, S. A., Salim, M. S., Kamaruddin, R., Badlishah Ahmad, R., & Malek, M. F. (2014). Cognitive wireless sensor actor network: An agricultural perspective. International Journal of Innovative Computing, Information and Control, 10(2), 631–658.

Saimandir, J., Gopal, M., & Walia, S. (2009). Risk assessment of thiacloprid and its chemical decontamination on eggplant, Solanum melongena L. Pest Management Science, 65(2), 210–215.

Szenci, O., Beckers, J. F., Humblot, P., Sulon, J., Sasser, G., Taverne, M. A. M., Varga, J., Baltusen, R., & Schekk, G. (1998). Comparison of ultrasonography, bovine pregnancy-specific protein B and bovine pregnancy-associated glycoprotein 1 tests for pregnancy detection in dairy cows. Theriogenology, 50(1), 77–88.

Thies, C., Haenke, S., Scherber, C., Bengtsson, J., Bommarco, R., Clement, L. W., Ceryngier, P., Dennis, C., Emmerson, M., Gagic, V., Hawro, V., Liira, J., Weisser, W. W., Winqvist, C., & Tscharntke, T. (2011). The relationship between agricultural intensification and biological control: Experimental tests across Europe. Ecological Applications, 21(6), 2187–2196.

Turner, J. A., Klerkx, L., White, T., Nelson, T., Everett-Hincks, J., Mackay, A., & Botha, N. (2017). Unpacking systemic innovation capacity as strategic ambidexterity: How projects dynamically configure capabilities for agricultural innovation. Land Use Policy, 68, 503–523.

Wang, D., & Yates, S. R. (1999). Spatial and temporal distributions of 1,3-dichloropropene in soil under drip and shank application and implications for pest control efficacy using concentration- time index. Pesticide Science, 55(2), 154–160.

Young, E. O., & Ross, D. S. (2001). Phosphate release from seasonally flooded soils: A laboratory microcosm study. Journal of Environmental Quality, 30(1), 91–101. https://doi.org/10.2134/jeq2001.30191x

Published
2020-05-30
How to Cite
(1)
S, G.; G, C.; S, R. Use of Modern Technology in The Automated Farming of Agriculture. ijceae 2020, 2, 49-54.
Section
Articles



Views: Abstract : 63 | PDF : 55