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ABSTRACT: The increasing popularity of Software as a Service (SaaS) stresses the need of 

solutions to predict failures and avoid service interruptions, which invariably result in SLA 

violations and severe loss of revenue. A promising approach to continuously monitor the 

correct functioning of the system is to check the execution conformance to a set of 

invariants, i.e., properties that must hold when the system is deemed to run correctly. This 

paper proposes a technique to spot a true anomalies by the use of various data mining 

techniques like clustering, association rule and decision tree algorithms help in finding the 

hidden and previously unknown information from the database. We assess the techniques 

in two invariants’ applications, namely executions characterization and anomaly detection, 

using the metrics of coverage, recall and precision. In this work two real-world datasets 

have been used - the publicly available Google datacenter dataset and a dataset of a 

commercial SaaS utility computing platform - for detecting the anomalies.  
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1. Introduction  

Dynamic invariants are properties of a program that 

holds at a certain point or points in a program and this 

dynamic invariant detection runs a program, observes the 

values, and then reports properties over the observed 

executions. So system invariants are attractive for modelling 

runtime behaviour of data centres and cloud based utility 

computing system from a service operation viewpoint. Due 

to the size and complexity of such systems, it is very hard for 

human operators to detect problems in real time like timing 

issues, exceptions, system crash etc., The violations of system 

invariants are considered as symptoms of execution 

malfunctions and mining invariants include activities like 

capacity planning, detecting anomalous behaviours and 

violations of service level agreements. But practitioner faces 

several problems to select a proper technique for their 

analysis goals and this can be analysed by analysing and 

comparing techniques to mine invariants. By empirically 

analysing and comparing techniques to mine invariants, we 

contribute to gain quantitative insights into advantages and 

limits of such techniques, providing operation engineers 

with practical usage implications and a heuristic to select a 

set of invariants from a dataset. 

There are three techniques namely clustering, 

association rules and decision list. They are applied to two 

independent datasets collected in real world systems - Google 

and SAAS platform for finding correct and anomalous 

executions. We assess this technique in two invariants 

namely executions characterization and anomaly detection 

based on coverage and precision. So by using these mined 

invariants, it was possible to provide a valuable result, 

spotting for anomalies for a number of transactions. The 

study focuses on three techniques: two unsupervised, namely 

clustering and association rules, and one supervised, decision 

list. They are applied to two independent datasets collected in 

real-world systems: a cluster operated by Google, whose 

traces from about 12,500 machines are publicly available, 

and a SaaS platform in use by various medium- to large-scale 

consumer packaged goods (CPG) companies worldwide. The 

datasets comprise 679,984 executions (correct and 

anomalous) of batch units of work, namely jobs and 

transactions. 

The considered techniques provide a valuable 

support for characterizing executions and detecting 

anomalies in an automated way. For the SaaS cloud platform 

in particular, using the mined invariants it was possible to 

provide a valuable result to the service operation team of the 

IT company, spotting true anomalies for a number of 

transactions out of the seven month’s of operation data, 

which were indeed missing and went unnoticed. A relatively 

small number of invariants hold in a majority of system 

executions. For example, in the Google dataset less than 10 

invariants cover more than the 80% of job executions (using 

association rules - Apriori algorithm). Using further 

invariants does not increase coverage significantly. 

Invariants are very sensitive to the coverage: small variations 

of the coverage impact significantly recall and precision. In 

spite of the best coverage, association rules are not well 
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suited for anomaly detection; notwithstanding the smaller 

coverage, invariants mined by decision list achieve higher 

recall/precision for anomaly detection. We propose a 

general heuristic for selecting a set of likely invariants from a 

dataset. 

2. Literature Survey                                                             

 Dynamically program invariant detection 

technology is used to detect invariants in the data and we 

should have lack of accuracy and efficiency for 

understanding the detected program. In this paper, we divide 

the invariants into two kinds –functional and non-functional 

invariants. First it focuses on the functional invariants and 

later it detects the existent invariants which solves the 

problem of blind detection to improve the efficiency but also 

reduces the possibility of missing important functional 

invariants. To detect the invariants, we have to insert some 

probes in the detection points without destroying the logic 

integrity of the program and next we have to select test cases 

and run program over test suites and analyse the data trace 

and report likely invariants in the form of relational table. 

Then we have to deduce functional dependence set from 

trace relationship and consider each function form from set 

and deduce the parameters from current data trace file. This 

approach resolved the problem of how to detect the forms of 

functional invariants which can improve efficiency of the 

traditional hypothesis verification approach of detecting 

invariants [1]. 

    The increasing popularity of software as a service 

stresses the need of solutions to predict failures and avoid 

service interruptions, which result in SLA violations and loss 

of revenue. In this paper we propose a framework and a tool 

to automatically discover invariants from  Saas application 

logs. Invariants are the properties of a program that are hold 

for all executions of the program. If these properties are 

found to be violated while monitoring, it is possible to raise 

an alarm for immediate action. In this, they consider a log 

and apply framework and tool for 9 months, it detects 12 

invariants with stringent goodness of fit criteria of 0.7 from a 

possibility of 528 relationships. It is implemented in java as 

icirrus toolset both for identification of invariants among the 

relationships from application logs. This approach reduce 

the quality of data to be analysed for understanding the 

system behaviour in case of error and detect the error itself 

[2]. 

 Invariants represent properties of a system that are 

expected to hold when everything goes well. Thus, the 

violation of an invariant most likely corresponds to the 

occurrence of an anomaly in the system. In this paper, we 

discuss the accuracy and the completeness of an anomaly 

detection system based on invariants. Invariants represent 

properties of a program that are guaranteed to hold during 

its execution. Thus, their violation during the program 

execution likely represents a symptom of an anomalous 

behaviour by using invariant detection technology. Here we 

compare the results of a detection mechanism based on 

invariant violation with the actual violations present in the 

logs accurately. Also, we studied how much the time to mine 

invariants and the time to detect anomalies depend on the 

sampling time. The accuracy of the approach stays in the 

range 50-74% depending on (i) used invariants and (ii) 

sampling time. Thus, a completeness of 100% is found, thus, 

all the anomalies reported in the application logs are 

detected through the invariant-based approach [3]. 

This paper presents an instance based approach for 

recognizing the failures in computing system. There are 

some repeated failures in the system. So, our method takes 

advantage of past experiences by storing historical failures in 

a database and retrieving similar instances in the occurrence 

of failure. We extract the system ‘invariants’ by modelling 

consistent dependencies between system attributes during 

the operation. We use a high dimensional binary vector to 

store those failure evidences, and develop a novel algorithm 

to efficiently retrieve failure signatures from the database. A 

template based failure retrieval algorithm has also been 

developed to gain retrieval efficiencies. This can be 

applicable to large computing systems. We have proposed 

our unique representation of failure signature, and the 

metric for comparing different failures. Experimental results 

have demonstrated that our method can achieve accurate 

and fast retrieval of historical failures, in which it leads to 

save the time. But this cannot be applicable to system 

undergoes significant updates, such as the structure change, 

we do not know whether the failure signature will still hold 

or not. As our future work, we will perform extensive 

experiments to further verify the current approach [4].   

Explicitly stated program invariants can help 

programmers by identifying program properties that must be 

preserved when modifying code. In practice, however, these 

invariants are usually implicit. An alternative to expecting 

pro- grammars to fully annotate code with invariants is to 

automatically infer invariants from the program itself. This 

research focuses on dynamic techniques for discovering in- 

variants from execution traces. This paper reports two 

results. First, it describes techniques for dynamically 

discovering invariants, along with an instrumented and an 

inference engine that embody these techniques. Second, it 

reports on the application of the engine to two sets of target 

programs. This paper documents the feasibility and 

effectiveness of dis- covering program invariants based on 

execution traces. The techniques we have developed, along 

with the prototype implementation, are adequately fast when 

applied to programs of several hundred lines [5]. 

3. Design 

3.1 Data Sets 

In this work two real-world datasets have been used 

- the publicly available Google datacenter dataset and a 
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dataset of a commercial SaaS utility computing platform - for 

detecting the anomalies. 

3.1.1 Google cluster 

 The workload consists of tasks, each running on a 

single machine. Every task belongs to one job; a job may have 

multiple tasks (e.g., mappers and reducers). There are six 

tables in the dataset: Machine_events, Machine_attributes, 

Job_events, Task_events, Task_constraints and the 

Resource_Usage. Every job and every machine is assigned a 

unique 64-bit identifier. Tasks are identified by means of the 

ID of their job and an index; most resource utilization 

measurements are normalized. 

 Machines are described by two tables. 

Machine_events reports addition, removal or update of a 

machine to the cluster, along with its CPU and memory 

capacity. Machine_attribute lists key value pairs of attributes 

representing properties such as kernel version, clock speed, 

and presence of an external IP address. The Job_events and 

Task_events tables describe jobs/tasks and their lifecycle. The 

Resource_Usage table reports resource usage of the tasks. 

 

3.1.2 SaaS platform 

The SaaS platform we consider provides cloud-

based data processing and analysis capability to several 

consumer packaged good (CPG) companies. The platform 

accepts and transforms data files provided by customers 

through FTP servers or email attachments. The platform 

accepts and transforms data files provided by customers 

through FTP servers or email attachments.When a data file 

accepted by this platform, then it go through processing 

stages such as validation, data extraction and 

transformations. A processing stage within a transaction can 

result in a success or a failure. If success, moves to the next 

stage otherwise the platform generates an exception then the 

transaction is aborted. Management modules are responsible 

for handling the transactions and monitoring the progression 

of stages. 

The platform relies on databases containing the 

configuration and business rules. The staging database 

maintains intermediate results of the work item and audit 

logs contains execution information and error events. This 

logs tables contains outcome of processing stage, such as id 

of work item and start/end times. 

fig. 3.1.2 High-level architecture of the SaaS platform 

fig. 3.2  Framework to mine invariants and feedback mechanisms. 
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3.2 Invariant Mining 

A workload unit W (i.e., a job in the data centre or a 

processing stage of a transaction in the SaaS platform) is 

abstracted by a set of N attributes A1,A2,...,AN. These 

attributes represent the computing resources used or 

parameters such as duration, priority and return codes, 

being collected during the execution of W. The attributes 

that characterize the execution of a workload unit assume a 

value in the Cartesian product {VA1 ×VA2 ···×VAN}, where 

VAj denotes the set of the possible values of Aj(1 ≤ j ≤ N). 

The values of the attributes are extracted from the input 

dataset to form an M×N attributes matrix, where M denotes 

the total workload units Wi (1≤i≤M). 

 It uses a framework and steps that underlie 

invariant mining. Among many invariants, they will select a 

subset of invariants for a specific application. We classify a 

workload unit to be correct, when it is correctly executed by 

the system, anomalous otherwise.  

Given the input monitoring data at a given time ti, 

(i) workload abstraction infers the M workload units Wi and 

the values of the attributes for each Wi; (ii) invariant mining 

infers the set of recurring relationships among the values of 

the attributes from the data collected until ti, i.e., invariants 

Iti in Fig. 3. At ti==t0 (where t0 denotes the time of the first 

ever mining), the set of invariants available to operations 

engineers is I=It0, which is mined from the data at 

t0.Moreover,engineers will select a subset of invariants in I, 

i.e., actionable invariants in Fig. 3, that will be used for a 

specific application, e.g., anomaly detection. 

3.3 Dynamic Detecting Likely Invariant 

This mainly focuses on the approach of detecting 

functional likely invariant which not only solves the 

problems of blind detection to improve the efficiency but also 

reduces the possibility of missing important functional 

invariants compared with the traditional hypothesis 

verification approach such as Daikon. 

3.3.1 Dynamic invariant detection  

 The whole running process of a program is close 

and invisible unless it needs interaction. So inserting some 

probes in the detection points without destroying the logic 

integrity of the program can obtain the information of the 

running program. When the probes are executed, the value 

of variables at those detection points will be thrown out. 

Analysing these feature data could help revealing the 

information of data flow and control flow of the program for 

discovering program invariant.  The process of inserting the 

tracking code is called instrument and the location of the 

inserted probes is called instrumented program point. 

There are four steps in the process of dynamic likely 

invariant detection, as shown in figure1: (1) Insert track 

code into the source program. (2) Select test cases. (3) Run 

program over the test suites. (4) Analyze the data trace and 

report likely invariants. 

3.3.2 Trace of Program 

Step 1 to step 3 is the process of generating and 

collecting the trace of program. The trace which implies the 

values of the instrument variables at program execution 

period is the base of dynamic detection. For example, 

suppose that X={x1,x2,…,xn} represents the instrument 

variables set  and （d1,d2,…dn） represents the record of 

program running once (di means the value of  xi after 

program execution).n items of running record  will be 

obtained that constitute data trace file of the program on the 

detecting point when the instrument program is run over n 

items of test cases. 

Therefore, to accomplish invariant detection based 

on the program data trace becomes to discover the parsing 

expression of the relation pattern by analyzing the instances. 

 

Fig.3.3.1 An overview of dynamic invariant detection 
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 Table- 3.3.2 Values of instrument variables 

Order X1 X2 X3 

1 2 4 3453 

2 23 25 55 

… … … … 

1000 4 6 3125 

 

3.3.3 Classies of invariants 

An invariant is the description of the property of a 

program, whose form is determined by the relationship 

between the constants, variables and expression on the 

instrumented program point. Function relation that abounds 

in a program is the most important data relation and has 

wide applications. The invariants can be generally classified 

into functional invariants and non-functional invariants 

.Functional invariants can be described in mathematic 

relation such as invariant in linear relation y=a*x+b, 

whereas those can not be described in  mathematic relation 

are called nonfunctional invariants such as invariants in 

comparison relation  x<y and in  range relation a ≤ x ≤ b 

etc.  Functional invariant should be considered with high 

priority because of its wide application and volume of 

existence.  

3.4 Detection Approach 

Once the invariants have been defined, we are able 

to estimate the expected output ˆ y(t) of the system, given the 

input x(t). Let y(t) be the actual output of the system for the 

input x(t). At this point, to define an anomaly detector, we 

have to select a function δ computing the distance of ˆ y(t) 

from y(t). For this purpose, we use the residual function: 

Rxy(t) = |y(t)− ˆ y(t|ˆ θ)| (2) 

An alert is raised at time t if Rxy(t) >τ where τ 

represents the tolerance of the detection system. The number 

of estimated violations and the number of raised alerts 

heavily depend on the threshold value τ, as discussed in [6]. 

When τ =0, invariants are broken for almost each entry of 

the logs. Clearly, it is very difficult that the predicted values 

is exactly the same of the system monitored value. If 

invariants with coefficient of determination larger or equal 

to 0.70 are accepted, up to 30% of the variation is not 

explained by the model. A threshold depending on the 

prediction interval (π) of the output with respect to the 

provided input is then considered. In [6], it is shown that 

when adopting this threshold, the number of alerts is largely 

reduced, but anomalies likely causing SLA violations are 

detected anyway. In this we show that all the anomalies 

happening in the system and reported in the application logs 

can be detected. 

Starting from the invariant mining framework 

presented in [6], we implemented an anomaly detection 

system. Its schematic diagram is depicted in Figure 1. The 

Invariant specification Workbench GUI allows the user to 

interact with the system 

As an instance, of the incoming data to be used as 

training logs, a subset can be selected for instructing the 

detection system. The Log Analyser component, invoked by 

the workbench, takes such logs as inputs and generates time 

series as a flow matrix, which is used by the Flow invariant 

miner to infer the flow invariants. Invariants are then stored 

in XML format. The latter two components act as a single 

module for producing the invariants used for the detection. It 

is worth noting that the miner is able to automatically 

identify invariants and evaluate the goodness of fit exploiting 

the common format of time series data, while the analysis 

and the creation of the flow matrix is to be tailored on 

specific log format of the application.  

Fig. 3.4 Input, output, and main components of the implemented   tool for  mining invariants and online detecting 
anomalies. 
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 The tool supports repeated execution of time-series 

generation and invariant generation for different sampling 

times with the help of the workbench module. It may also be 

required to define a new invariant that the operations team 

would like to monitor, in addition to the automatically 

identified ones, or to discard some invariants based on their 

prediction capability. The workbench module provides such 

functionalities, too. The Violation Detector component uses 

mined invariants and runtime application logs to check the 

ones that, possibly, are broken because of some anomalies 

and, in that case, rise alerts and generates violation reports. 

Clearly, also runtime application logs needs to be 

opportunely parsed to make them understandable by the 

detector. 

3.5 Failure Signature Representation 

 The failure representation is based on our previous 

work [5] on system invariants discovery. The concept of 

invariants was motivated by the observation that most of the 

system attributes in the measurement data are strongly 

correlated. For example, the resource utilizations of the 

system such as CPU and memory usages always increase or 

decrease in accordance with the change of system 

workloads. Furthermore, the system structure and design 

also introduce a lot of correlated attributes. Based on the 

above observations, we build an ensemble of models to 

correlate the large amount of monitoring data collected from 

various points of the system. If the discovered correlations 

can continually hold under different user scenarios and 

workloads, they are regarded as invariants of the 

information system. 

 After we learn all the models, we also validate them 

using the operational data from different system workloads. 

Only those correlations that always keep high fitness value 

during the validation are regarded as the invariants of the  

system. Since the learned invariants reflect the system 

internal properties and are robust under normal system 

dynamics such as the workload variations, they can benefit 

many system management tasks. In the following, we use the 

status of invariants to represent system failures. 

 The discovered invariants can be illustrated by a 

network graph as shown in Figure 1(a), in which each node 

represents one system attribute, and each link represents the 

invariant relationship (1) between the two end attributes. 

Based on the invariants graph, we can inspect the system 

runtime status by examining the consistencies of learned 

invariants during the operation. We set a threshold for the 

residual R to determine whether the invariant model is 

broken or not. The threshold value is based on the residual 

values computed from historical data. In real situations, a 

system failure usually leaves evidences on a variety of 

invariant residuals instead of just a few broken invariants. 

The condition of each invariant, i.e., being normal or broken, 

provides a view of failure characteristics, because different 

types of failures usually introduce different subsets of broken 

invariants. Therefore we can use the status of system 

invariants network under the failure to represent the 

characteristics of that failure. 

 Figure 3.5(b) presents an example to illustrate the 

status of invariants network under the failure. In a typical 

situation, the failure starts with a relatively small number of 

broken invariants, followed by a gradual increase of broken 

ones until they get saturated after some time. In order to 

cover all those evidences, we record the status of invariants 

at every sampling interval, and include the union of all 

broken invariants during the failure period into the 

signature representation. The length of the failure period 

varies with different failures. If it is a transit failure or 

performance problem, the system may go back to the normal 

state after a short time. 

fig. 3.5 The status of invariants network when the system is (a)in the normal state and (b) under a failure 
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fig3.5 The status of system invariants during (a) the web server failure, and (b) the database server failure. 

 There have been several papers [2] [8] recently 

dealing with the instance based failure diagnosis. However, 

those methods used the raw system measurements as the 

failure signature. Compared with them, our graph based 

representation provides more evidences about the failure 

source because it includes the correlation changes between 

system attributes during the failure. Such information is 

especially important when the failure symptoms are noisy. 

Figure 2 presents an example to illustrate such fact, in which 

three units, Web, AP, and DB, represent typical components 

in a multi-tiered web system: the web server, the application 

server, and the database server. Note each node in Figure 6 

represents one component that includes a number of 

attributes, and each line denotes a set of invariants formed by 

the attributes originating from two end components of the 

line. The line that connects the same component corresponds 

to the internal invariants of that component. Figure 6(a) 

presents the situation of web server failure, whereas Figure 

6(b) presents the case of database failure. In those two 

situations, if the numbers of abnormal attributes, i.e., those 

violating their thresholds, are the same in the web server and 

database server, the measurements based failure 

representation cannot tell which server has the problem. 

However, in our representation, we can compare the sizes of 

the following two sets of broken invariants to get more clues: 

those between the web server and the application server, and 

those between the application server and the database server. 

If more invariants are broken between the web server and 

the application server, the web server is more likely to 

encounter a failure [9]. 

4. Methodology 

4.1 Mining Techniques 

    The invariant mining step shown in Fig. 3 aims to 

infer recurring patterns among the attributes of the 

workload units. Likely patterns represent invariants, i.e., 

properties holding across different executions of batch work. 

. In the Google dataset we noted that 54,976 jobs assume the 

values R0, low and D0 for attributes R, P, and D, respectively, 

meaning that a significant number of jobs experiencing no 

task resubmissions have low priority and small duration. 

Similarly, in the SaaS dataset, 10,701 processing stages 

assume the value IT3, L1_REJ, Invalid_File (for S, E and R, 

respectively), indicating that the stage IT3 exiting with code 

L1_REJ fail because of an invalid file. There are a number of 

considerations underlying the choice of the clustering, 

association rules and decision list mining techniques. First, 

production systems might generate unlabeled workload data, 

which prevents the use of many machine learning 

techniques. More important, as pointed out in [10], 

invariants should be comprehensible and useful to 

practitioners. Alternative invariant based classifiers can been 

applied, e.g. neural or Bayesian networks; however, their 

output, e.g., probabilities and/or weights, have small 

explicative power for practical purposes. 

4.1.1 Clustering 

Clustering is an unsupervised technique and the invariants 

obtained specify the values of all the attributes .Clustering 

methods are mainly suitable for finding interrelationships 

between data to make a assessment of sample structure. It is 

required because for humans it is very difficult to 

understand data in a high dimensional space. It can be noted 

that the 30,025 stage concentrate around a few tens data 

points [11]. A similar consideration can be done in the 

Google dataset. This technique identifies clusters of data 

points and it has been applied by k-medoids algorithm. The 

medoid of a cluster is assumed to be invariant that 

characterizes the data points of the cluster. The k-medoid is 

used to find out clusters from the given data and has high 

computation cost and not sensitive to noisy data. The number 

of clusters K the workload units will be assigned to is an 

input parameter of K-medoids. The medoid of a cluster is 

assumed to be invariant that characterizes the data points of 

the cluster. Points belonging to the same cluster are 

characterized by the same invariant. 

 We assume that the points belonging to the same 

cluster are characterized by the same invariant. Clusters are 

sorted by decreasing size, beforehand: likely invariants are 

deemed to be the ones representing larger clusters. 

Clustering is an unsupervised technique (i.e., it does not 

require labelled training data). The invariants obtained 

specify the values of all the attributes. 



Vol. 1 Iss. 1 Year 2019                                              K. Sadhika /2019    

 The Intl J Comp. Comm Inf , 30-38 | 37  

Fig.4.1.1 3D scatterplot of the workload units in the SaaS dataset  

4.1.2 Association Rules 

 The second technique is frequent item set mining, 

which extracts frequently observed patterns in a database in 

the form of item sets or association rules. This technique is 

well known in the field of market basket analysis, where it is 

used to find out sets of products that are frequently bought 

together. We apply the association concept to values of 

attributes. Let B ={i1,...,im}be a set of items, any S ⊆ B an 

item set, and T the bag of transactions under consideration(a 

transaction is a set of items). The absolute support (the 

relative support) of S is the number of transactions in T (the 

percentage of transactions in T) that contain S. More 

formally, let U ={X ∈ T | S ⊆ T}be the set of transactions in 

T that have S as a subset (i.e., contain all the items in S and 

possibly some others). Then suppabs(S) = |U| = |{X ∈ T|S 

⊆ T}| is the absolute support of S, and supprel(S) = |U| |T| 

×100% is the relative support of S. Here |U| and |T| are the 

number of elements in U and T, respectively. 

 The support threshold (s) is an input of the 

algorithm: the smaller it is, the larger the number of 

association rules that will be returned by the algorithm. 

Association rules returned by either Apriori or GSP are 

assumed to represent an invariant. Rules are sorted by 

decreasing values of the support, i.e. by decreasing 

likelihood. 

4.1.3 Decision Tree 

 A decision tree is a supervised technique and an 

ordered set of classification rules. Given a workload unit 

abstracted by the value of the attributes, the list is scanned 

until a rule is found that matches the attributes. We use 

Naïve Bayes algorithm which is based on bayes theorem with 

an assumption of independence among predictors. A naïve 

bayes classifier assumes that the presence of a particular 

feature in a class is unrelated to presence of any other 

feature. So it is very easy to build and particularly used for 

very large data sets. In this study, the rules in the list that aim 

to catch the correct workload units are deemed to be 

invariants, they are sorted by decreasing number of correct 

units they detect. 

             Lists some of the 91 classification rules obtained for 

the Google dataset with PART. For instance, a job where 

T=T2 and R=R0 is classified as KILLED regardless the value 

of the remaining attributes because it matches the rule at 

line2;similarly, by looking at line 4 and 6 it can be noted that 

a job where T=T0 and R=R0 and P=High and D=D2 is 

classified as FINISHED if (i) it has been run on the server type 

B (regardless the CPU usage) or (ii) its CPU usage has been 

C0 in the case the server type is C. 

1. if (T=T2 and R=R1) then KILLED 2  

2. else if (T=T2 and R=R0) then KILLED 3   

3. else if (T=T0 and R=R0 and P=High and D=D2 and 

S=B) 5 then FINISHED 6  

 4. else if (T=T0 and R=R0 and P=High and D=D2 and 

C=C0 7 and S=C) then FINISHED 8  

5. else if (P=MEDIUM) then FAILED 10  

6. default FINISHED 

 Differently from clustering and association rules, 

decision list is a supervised technique because the model is 

learned f222s+rom a labeled dataset (i.e., beside the 

attributes matrix, the construction of the tree requires the 

knowledge of the label of each workload unit). In this study, 

the rules in the list that aim to catch the correct workload 

units are deemed to be invariants; they are sorted by 

decreasing number of correct units they detect. 

5. Conclusion 

 Invariants can be mined for a variety of service 

computing systems, including cloud systems, web service 

infrastructures, data centres, enterprise systems, IT services , 

network services. The identification and analyses of their 

violations support a range of operational activities such as 

anomaly detection, capacity planning. The results provide 

suggestions to practitioners  to establish the configuration of 

the mining algorithms and to select  the number of 

invariants. A small number of invariants allows to reach a 

high coverage, i.e. they can characterize the most of the 

executions. Finally, we presented a general heuristic  for 
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selecting the likely invariants from a dataset. Finally, we 

presented a general heuristic for selecting a set of likely 

invariants from a dataset. All these results aim to fill the gap 

between past scientific studies and the concrete usage of 

likely system invariants by operations engineers. 
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