

 The Intl J Comp. Comm Inf , 30-38 | 30

Mining Techniques For Invariants In Cloud Computing

K. Sadhika a*

a UG Scholar, Department of Computer Science and Engineering, GMR Institute of Technology, Razam.

*Corresponding Author

sadhikakarri2@gmail.com

(K. Sadhika)

Received : 12-04-2019
Accepted : 20-05-2019

ABSTRACT: The increasing popularity of Software as a Service (SaaS) stresses the need of

solutions to predict failures and avoid service interruptions, which invariably result in SLA

violations and severe loss of revenue. A promising approach to continuously monitor the

correct functioning of the system is to check the execution conformance to a set of

invariants, i.e., properties that must hold when the system is deemed to run correctly. This

paper proposes a technique to spot a true anomalies by the use of various data mining

techniques like clustering, association rule and decision tree algorithms help in finding the

hidden and previously unknown information from the database. We assess the techniques

in two invariants’ applications, namely executions characterization and anomaly detection,

using the metrics of coverage, recall and precision. In this work two real-world datasets

have been used - the publicly available Google datacenter dataset and a dataset of a

commercial SaaS utility computing platform - for detecting the anomalies.

Keywords: Anomaly detection, Invariants, SaaS, Cloud

1. Introduction

Dynamic invariants are properties of a program that

holds at a certain point or points in a program and this

dynamic invariant detection runs a program, observes the

values, and then reports properties over the observed

executions. So system invariants are attractive for modelling

runtime behaviour of data centres and cloud based utility

computing system from a service operation viewpoint. Due

to the size and complexity of such systems, it is very hard for

human operators to detect problems in real time like timing

issues, exceptions, system crash etc., The violations of system

invariants are considered as symptoms of execution

malfunctions and mining invariants include activities like

capacity planning, detecting anomalous behaviours and

violations of service level agreements. But practitioner faces

several problems to select a proper technique for their

analysis goals and this can be analysed by analysing and

comparing techniques to mine invariants. By empirically

analysing and comparing techniques to mine invariants, we

contribute to gain quantitative insights into advantages and

limits of such techniques, providing operation engineers

with practical usage implications and a heuristic to select a

set of invariants from a dataset.

There are three techniques namely clustering,

association rules and decision list. They are applied to two

independent datasets collected in real world systems - Google

and SAAS platform for finding correct and anomalous

executions. We assess this technique in two invariants

namely executions characterization and anomaly detection

based on coverage and precision. So by using these mined

invariants, it was possible to provide a valuable result,

spotting for anomalies for a number of transactions. The

study focuses on three techniques: two unsupervised, namely

clustering and association rules, and one supervised, decision

list. They are applied to two independent datasets collected in

real-world systems: a cluster operated by Google, whose

traces from about 12,500 machines are publicly available,

and a SaaS platform in use by various medium- to large-scale

consumer packaged goods (CPG) companies worldwide. The

datasets comprise 679,984 executions (correct and

anomalous) of batch units of work, namely jobs and

transactions.

The considered techniques provide a valuable

support for characterizing executions and detecting

anomalies in an automated way. For the SaaS cloud platform

in particular, using the mined invariants it was possible to

provide a valuable result to the service operation team of the

IT company, spotting true anomalies for a number of

transactions out of the seven month’s of operation data,

which were indeed missing and went unnoticed. A relatively

small number of invariants hold in a majority of system

executions. For example, in the Google dataset less than 10

invariants cover more than the 80% of job executions (using

association rules - Apriori algorithm). Using further

invariants does not increase coverage significantly.

Invariants are very sensitive to the coverage: small variations

of the coverage impact significantly recall and precision. In

spite of the best coverage, association rules are not well

R
E

S
E

A
R

C
H

 A
R

T
IC

L
E

D
O

I:
 1

0
.3

4
2

5
6

/
ij

cc
i1

9
1

6

mailto:sadhikakarri2@gmail.com

Vol. 1 Iss. 1 Year 2019 K. Sadhika /2019

 The Intl J Comp. Comm Inf , 30-38 | 31

suited for anomaly detection; notwithstanding the smaller

coverage, invariants mined by decision list achieve higher

recall/precision for anomaly detection. We propose a

general heuristic for selecting a set of likely invariants from a

dataset.

2. Literature Survey

 Dynamically program invariant detection

technology is used to detect invariants in the data and we

should have lack of accuracy and efficiency for

understanding the detected program. In this paper, we divide

the invariants into two kinds –functional and non-functional

invariants. First it focuses on the functional invariants and

later it detects the existent invariants which solves the

problem of blind detection to improve the efficiency but also

reduces the possibility of missing important functional

invariants. To detect the invariants, we have to insert some

probes in the detection points without destroying the logic

integrity of the program and next we have to select test cases

and run program over test suites and analyse the data trace

and report likely invariants in the form of relational table.

Then we have to deduce functional dependence set from

trace relationship and consider each function form from set

and deduce the parameters from current data trace file. This

approach resolved the problem of how to detect the forms of

functional invariants which can improve efficiency of the

traditional hypothesis verification approach of detecting

invariants [1].

 The increasing popularity of software as a service

stresses the need of solutions to predict failures and avoid

service interruptions, which result in SLA violations and loss

of revenue. In this paper we propose a framework and a tool

to automatically discover invariants from Saas application

logs. Invariants are the properties of a program that are hold

for all executions of the program. If these properties are

found to be violated while monitoring, it is possible to raise

an alarm for immediate action. In this, they consider a log

and apply framework and tool for 9 months, it detects 12

invariants with stringent goodness of fit criteria of 0.7 from a

possibility of 528 relationships. It is implemented in java as

icirrus toolset both for identification of invariants among the

relationships from application logs. This approach reduce

the quality of data to be analysed for understanding the

system behaviour in case of error and detect the error itself

[2].

 Invariants represent properties of a system that are

expected to hold when everything goes well. Thus, the

violation of an invariant most likely corresponds to the

occurrence of an anomaly in the system. In this paper, we

discuss the accuracy and the completeness of an anomaly

detection system based on invariants. Invariants represent

properties of a program that are guaranteed to hold during

its execution. Thus, their violation during the program

execution likely represents a symptom of an anomalous

behaviour by using invariant detection technology. Here we

compare the results of a detection mechanism based on

invariant violation with the actual violations present in the

logs accurately. Also, we studied how much the time to mine

invariants and the time to detect anomalies depend on the

sampling time. The accuracy of the approach stays in the

range 50-74% depending on (i) used invariants and (ii)

sampling time. Thus, a completeness of 100% is found, thus,

all the anomalies reported in the application logs are

detected through the invariant-based approach [3].

This paper presents an instance based approach for

recognizing the failures in computing system. There are

some repeated failures in the system. So, our method takes

advantage of past experiences by storing historical failures in

a database and retrieving similar instances in the occurrence

of failure. We extract the system ‘invariants’ by modelling

consistent dependencies between system attributes during

the operation. We use a high dimensional binary vector to

store those failure evidences, and develop a novel algorithm

to efficiently retrieve failure signatures from the database. A

template based failure retrieval algorithm has also been

developed to gain retrieval efficiencies. This can be

applicable to large computing systems. We have proposed

our unique representation of failure signature, and the

metric for comparing different failures. Experimental results

have demonstrated that our method can achieve accurate

and fast retrieval of historical failures, in which it leads to

save the time. But this cannot be applicable to system

undergoes significant updates, such as the structure change,

we do not know whether the failure signature will still hold

or not. As our future work, we will perform extensive

experiments to further verify the current approach [4].

Explicitly stated program invariants can help

programmers by identifying program properties that must be

preserved when modifying code. In practice, however, these

invariants are usually implicit. An alternative to expecting

pro- grammars to fully annotate code with invariants is to

automatically infer invariants from the program itself. This

research focuses on dynamic techniques for discovering in-

variants from execution traces. This paper reports two

results. First, it describes techniques for dynamically

discovering invariants, along with an instrumented and an

inference engine that embody these techniques. Second, it

reports on the application of the engine to two sets of target

programs. This paper documents the feasibility and

effectiveness of dis- covering program invariants based on

execution traces. The techniques we have developed, along

with the prototype implementation, are adequately fast when

applied to programs of several hundred lines [5].

3. Design

3.1 Data Sets

In this work two real-world datasets have been used

- the publicly available Google datacenter dataset and a

Vol. 1 Iss. 1 Year 2019 K. Sadhika /2019

 The Intl J Comp. Comm Inf , 30-38 | 32

dataset of a commercial SaaS utility computing platform - for

detecting the anomalies.

3.1.1 Google cluster

 The workload consists of tasks, each running on a

single machine. Every task belongs to one job; a job may have

multiple tasks (e.g., mappers and reducers). There are six

tables in the dataset: Machine_events, Machine_attributes,

Job_events, Task_events, Task_constraints and the

Resource_Usage. Every job and every machine is assigned a

unique 64-bit identifier. Tasks are identified by means of the

ID of their job and an index; most resource utilization

measurements are normalized.

 Machines are described by two tables.

Machine_events reports addition, removal or update of a

machine to the cluster, along with its CPU and memory

capacity. Machine_attribute lists key value pairs of attributes

representing properties such as kernel version, clock speed,

and presence of an external IP address. The Job_events and

Task_events tables describe jobs/tasks and their lifecycle. The

Resource_Usage table reports resource usage of the tasks.

3.1.2 SaaS platform

The SaaS platform we consider provides cloud-

based data processing and analysis capability to several

consumer packaged good (CPG) companies. The platform

accepts and transforms data files provided by customers

through FTP servers or email attachments. The platform

accepts and transforms data files provided by customers

through FTP servers or email attachments.When a data file

accepted by this platform, then it go through processing

stages such as validation, data extraction and

transformations. A processing stage within a transaction can

result in a success or a failure. If success, moves to the next

stage otherwise the platform generates an exception then the

transaction is aborted. Management modules are responsible

for handling the transactions and monitoring the progression

of stages.

The platform relies on databases containing the

configuration and business rules. The staging database

maintains intermediate results of the work item and audit

logs contains execution information and error events. This

logs tables contains outcome of processing stage, such as id

of work item and start/end times.

fig. 3.1.2 High-level architecture of the SaaS platform

fig. 3.2 Framework to mine invariants and feedback mechanisms.

Vol. 1 Iss. 1 Year 2019 K. Sadhika /2019

 The Intl J Comp. Comm Inf , 30-38 | 33

3.2 Invariant Mining

A workload unit W (i.e., a job in the data centre or a

processing stage of a transaction in the SaaS platform) is

abstracted by a set of N attributes A1,A2,...,AN. These

attributes represent the computing resources used or

parameters such as duration, priority and return codes,

being collected during the execution of W. The attributes

that characterize the execution of a workload unit assume a

value in the Cartesian product {VA1 ×VA2 ···×VAN}, where

VAj denotes the set of the possible values of Aj(1 ≤ j ≤ N).

The values of the attributes are extracted from the input

dataset to form an M×N attributes matrix, where M denotes

the total workload units Wi (1≤i≤M).

 It uses a framework and steps that underlie

invariant mining. Among many invariants, they will select a

subset of invariants for a specific application. We classify a

workload unit to be correct, when it is correctly executed by

the system, anomalous otherwise.

Given the input monitoring data at a given time ti,

(i) workload abstraction infers the M workload units Wi and

the values of the attributes for each Wi; (ii) invariant mining

infers the set of recurring relationships among the values of

the attributes from the data collected until ti, i.e., invariants

Iti in Fig. 3. At ti==t0 (where t0 denotes the time of the first

ever mining), the set of invariants available to operations

engineers is I=It0, which is mined from the data at

t0.Moreover,engineers will select a subset of invariants in I,

i.e., actionable invariants in Fig. 3, that will be used for a

specific application, e.g., anomaly detection.

3.3 Dynamic Detecting Likely Invariant

This mainly focuses on the approach of detecting

functional likely invariant which not only solves the

problems of blind detection to improve the efficiency but also

reduces the possibility of missing important functional

invariants compared with the traditional hypothesis

verification approach such as Daikon.

3.3.1 Dynamic invariant detection

 The whole running process of a program is close

and invisible unless it needs interaction. So inserting some

probes in the detection points without destroying the logic

integrity of the program can obtain the information of the

running program. When the probes are executed, the value

of variables at those detection points will be thrown out.

Analysing these feature data could help revealing the

information of data flow and control flow of the program for

discovering program invariant. The process of inserting the

tracking code is called instrument and the location of the

inserted probes is called instrumented program point.

There are four steps in the process of dynamic likely

invariant detection, as shown in figure1: (1) Insert track

code into the source program. (2) Select test cases. (3) Run

program over the test suites. (4) Analyze the data trace and

report likely invariants.

3.3.2 Trace of Program

Step 1 to step 3 is the process of generating and

collecting the trace of program. The trace which implies the

values of the instrument variables at program execution

period is the base of dynamic detection. For example,

suppose that X={x1,x2,…,xn} represents the instrument

variables set and （d1,d2,…dn） represents the record of

program running once (di means the value of xi after

program execution).n items of running record will be

obtained that constitute data trace file of the program on the

detecting point when the instrument program is run over n

items of test cases.

Therefore, to accomplish invariant detection based

on the program data trace becomes to discover the parsing

expression of the relation pattern by analyzing the instances.

Fig.3.3.1 An overview of dynamic invariant detection

Vol. 1 Iss. 1 Year 2019 K. Sadhika /2019

 The Intl J Comp. Comm Inf , 30-38 | 34

 Table- 3.3.2 Values of instrument variables

Order X1 X2 X3

1 2 4 3453

2 23 25 55

… … … …

1000 4 6 3125

3.3.3 Classies of invariants

An invariant is the description of the property of a

program, whose form is determined by the relationship

between the constants, variables and expression on the

instrumented program point. Function relation that abounds

in a program is the most important data relation and has

wide applications. The invariants can be generally classified

into functional invariants and non-functional invariants

.Functional invariants can be described in mathematic

relation such as invariant in linear relation y=a*x+b,

whereas those can not be described in mathematic relation

are called nonfunctional invariants such as invariants in

comparison relation x<y and in range relation a ≤ x ≤ b

etc. Functional invariant should be considered with high

priority because of its wide application and volume of

existence.

3.4 Detection Approach

Once the invariants have been defined, we are able

to estimate the expected output ˆ y(t) of the system, given the

input x(t). Let y(t) be the actual output of the system for the

input x(t). At this point, to define an anomaly detector, we

have to select a function δ computing the distance of ˆ y(t)

from y(t). For this purpose, we use the residual function:

Rxy(t) = |y(t)− ˆ y(t|ˆ θ)| (2)

An alert is raised at time t if Rxy(t) >τ where τ

represents the tolerance of the detection system. The number

of estimated violations and the number of raised alerts

heavily depend on the threshold value τ, as discussed in [6].

When τ =0, invariants are broken for almost each entry of

the logs. Clearly, it is very difficult that the predicted values

is exactly the same of the system monitored value. If

invariants with coefficient of determination larger or equal

to 0.70 are accepted, up to 30% of the variation is not

explained by the model. A threshold depending on the

prediction interval (π) of the output with respect to the

provided input is then considered. In [6], it is shown that

when adopting this threshold, the number of alerts is largely

reduced, but anomalies likely causing SLA violations are

detected anyway. In this we show that all the anomalies

happening in the system and reported in the application logs

can be detected.

Starting from the invariant mining framework

presented in [6], we implemented an anomaly detection

system. Its schematic diagram is depicted in Figure 1. The

Invariant specification Workbench GUI allows the user to

interact with the system

As an instance, of the incoming data to be used as

training logs, a subset can be selected for instructing the

detection system. The Log Analyser component, invoked by

the workbench, takes such logs as inputs and generates time

series as a flow matrix, which is used by the Flow invariant

miner to infer the flow invariants. Invariants are then stored

in XML format. The latter two components act as a single

module for producing the invariants used for the detection. It

is worth noting that the miner is able to automatically

identify invariants and evaluate the goodness of fit exploiting

the common format of time series data, while the analysis

and the creation of the flow matrix is to be tailored on

specific log format of the application.

Fig. 3.4 Input, output, and main components of the implemented tool for mining invariants and online detecting
anomalies.

Vol. 1 Iss. 1 Year 2019 K. Sadhika /2019

 The Intl J Comp. Comm Inf , 30-38 | 35

 The tool supports repeated execution of time-series

generation and invariant generation for different sampling

times with the help of the workbench module. It may also be

required to define a new invariant that the operations team

would like to monitor, in addition to the automatically

identified ones, or to discard some invariants based on their

prediction capability. The workbench module provides such

functionalities, too. The Violation Detector component uses

mined invariants and runtime application logs to check the

ones that, possibly, are broken because of some anomalies

and, in that case, rise alerts and generates violation reports.

Clearly, also runtime application logs needs to be

opportunely parsed to make them understandable by the

detector.

3.5 Failure Signature Representation

 The failure representation is based on our previous

work [5] on system invariants discovery. The concept of

invariants was motivated by the observation that most of the

system attributes in the measurement data are strongly

correlated. For example, the resource utilizations of the

system such as CPU and memory usages always increase or

decrease in accordance with the change of system

workloads. Furthermore, the system structure and design

also introduce a lot of correlated attributes. Based on the

above observations, we build an ensemble of models to

correlate the large amount of monitoring data collected from

various points of the system. If the discovered correlations

can continually hold under different user scenarios and

workloads, they are regarded as invariants of the

information system.

 After we learn all the models, we also validate them

using the operational data from different system workloads.

Only those correlations that always keep high fitness value

during the validation are regarded as the invariants of the

system. Since the learned invariants reflect the system

internal properties and are robust under normal system

dynamics such as the workload variations, they can benefit

many system management tasks. In the following, we use the

status of invariants to represent system failures.

 The discovered invariants can be illustrated by a

network graph as shown in Figure 1(a), in which each node

represents one system attribute, and each link represents the

invariant relationship (1) between the two end attributes.

Based on the invariants graph, we can inspect the system

runtime status by examining the consistencies of learned

invariants during the operation. We set a threshold for the

residual R to determine whether the invariant model is

broken or not. The threshold value is based on the residual

values computed from historical data. In real situations, a

system failure usually leaves evidences on a variety of

invariant residuals instead of just a few broken invariants.

The condition of each invariant, i.e., being normal or broken,

provides a view of failure characteristics, because different

types of failures usually introduce different subsets of broken

invariants. Therefore we can use the status of system

invariants network under the failure to represent the

characteristics of that failure.

 Figure 3.5(b) presents an example to illustrate the

status of invariants network under the failure. In a typical

situation, the failure starts with a relatively small number of

broken invariants, followed by a gradual increase of broken

ones until they get saturated after some time. In order to

cover all those evidences, we record the status of invariants

at every sampling interval, and include the union of all

broken invariants during the failure period into the

signature representation. The length of the failure period

varies with different failures. If it is a transit failure or

performance problem, the system may go back to the normal

state after a short time.

fig. 3.5 The status of invariants network when the system is (a)in the normal state and (b) under a failure

Vol. 1 Iss. 1 Year 2019 K. Sadhika /2019

 The Intl J Comp. Comm Inf , 30-38 | 36

fig3.5 The status of system invariants during (a) the web server failure, and (b) the database server failure.

 There have been several papers [2] [8] recently

dealing with the instance based failure diagnosis. However,

those methods used the raw system measurements as the

failure signature. Compared with them, our graph based

representation provides more evidences about the failure

source because it includes the correlation changes between

system attributes during the failure. Such information is

especially important when the failure symptoms are noisy.

Figure 2 presents an example to illustrate such fact, in which

three units, Web, AP, and DB, represent typical components

in a multi-tiered web system: the web server, the application

server, and the database server. Note each node in Figure 6

represents one component that includes a number of

attributes, and each line denotes a set of invariants formed by

the attributes originating from two end components of the

line. The line that connects the same component corresponds

to the internal invariants of that component. Figure 6(a)

presents the situation of web server failure, whereas Figure

6(b) presents the case of database failure. In those two

situations, if the numbers of abnormal attributes, i.e., those

violating their thresholds, are the same in the web server and

database server, the measurements based failure

representation cannot tell which server has the problem.

However, in our representation, we can compare the sizes of

the following two sets of broken invariants to get more clues:

those between the web server and the application server, and

those between the application server and the database server.

If more invariants are broken between the web server and

the application server, the web server is more likely to

encounter a failure [9].

4. Methodology

4.1 Mining Techniques

 The invariant mining step shown in Fig. 3 aims to

infer recurring patterns among the attributes of the

workload units. Likely patterns represent invariants, i.e.,

properties holding across different executions of batch work.

. In the Google dataset we noted that 54,976 jobs assume the

values R0, low and D0 for attributes R, P, and D, respectively,

meaning that a significant number of jobs experiencing no

task resubmissions have low priority and small duration.

Similarly, in the SaaS dataset, 10,701 processing stages

assume the value IT3, L1_REJ, Invalid_File (for S, E and R,

respectively), indicating that the stage IT3 exiting with code

L1_REJ fail because of an invalid file. There are a number of

considerations underlying the choice of the clustering,

association rules and decision list mining techniques. First,

production systems might generate unlabeled workload data,

which prevents the use of many machine learning

techniques. More important, as pointed out in [10],

invariants should be comprehensible and useful to

practitioners. Alternative invariant based classifiers can been

applied, e.g. neural or Bayesian networks; however, their

output, e.g., probabilities and/or weights, have small

explicative power for practical purposes.

4.1.1 Clustering

Clustering is an unsupervised technique and the invariants

obtained specify the values of all the attributes .Clustering

methods are mainly suitable for finding interrelationships

between data to make a assessment of sample structure. It is

required because for humans it is very difficult to

understand data in a high dimensional space. It can be noted

that the 30,025 stage concentrate around a few tens data

points [11]. A similar consideration can be done in the

Google dataset. This technique identifies clusters of data

points and it has been applied by k-medoids algorithm. The

medoid of a cluster is assumed to be invariant that

characterizes the data points of the cluster. The k-medoid is

used to find out clusters from the given data and has high

computation cost and not sensitive to noisy data. The number

of clusters K the workload units will be assigned to is an

input parameter of K-medoids. The medoid of a cluster is

assumed to be invariant that characterizes the data points of

the cluster. Points belonging to the same cluster are

characterized by the same invariant.

 We assume that the points belonging to the same

cluster are characterized by the same invariant. Clusters are

sorted by decreasing size, beforehand: likely invariants are

deemed to be the ones representing larger clusters.

Clustering is an unsupervised technique (i.e., it does not

require labelled training data). The invariants obtained

specify the values of all the attributes.

Vol. 1 Iss. 1 Year 2019 K. Sadhika /2019

 The Intl J Comp. Comm Inf , 30-38 | 37

Fig.4.1.1 3D scatterplot of the workload units in the SaaS dataset

4.1.2 Association Rules

 The second technique is frequent item set mining,

which extracts frequently observed patterns in a database in

the form of item sets or association rules. This technique is

well known in the field of market basket analysis, where it is

used to find out sets of products that are frequently bought

together. We apply the association concept to values of

attributes. Let B ={i1,...,im}be a set of items, any S ⊆ B an

item set, and T the bag of transactions under consideration(a

transaction is a set of items). The absolute support (the

relative support) of S is the number of transactions in T (the

percentage of transactions in T) that contain S. More

formally, let U ={X ∈ T | S ⊆ T}be the set of transactions in

T that have S as a subset (i.e., contain all the items in S and

possibly some others). Then suppabs(S) = |U| = |{X ∈ T|S

⊆ T}| is the absolute support of S, and supprel(S) = |U| |T|

×100% is the relative support of S. Here |U| and |T| are the

number of elements in U and T, respectively.

 The support threshold (s) is an input of the

algorithm: the smaller it is, the larger the number of

association rules that will be returned by the algorithm.

Association rules returned by either Apriori or GSP are

assumed to represent an invariant. Rules are sorted by

decreasing values of the support, i.e. by decreasing

likelihood.

4.1.3 Decision Tree

 A decision tree is a supervised technique and an

ordered set of classification rules. Given a workload unit

abstracted by the value of the attributes, the list is scanned

until a rule is found that matches the attributes. We use

Naïve Bayes algorithm which is based on bayes theorem with

an assumption of independence among predictors. A naïve

bayes classifier assumes that the presence of a particular

feature in a class is unrelated to presence of any other

feature. So it is very easy to build and particularly used for

very large data sets. In this study, the rules in the list that aim

to catch the correct workload units are deemed to be

invariants, they are sorted by decreasing number of correct

units they detect.

 Lists some of the 91 classification rules obtained for

the Google dataset with PART. For instance, a job where

T=T2 and R=R0 is classified as KILLED regardless the value

of the remaining attributes because it matches the rule at

line2;similarly, by looking at line 4 and 6 it can be noted that

a job where T=T0 and R=R0 and P=High and D=D2 is

classified as FINISHED if (i) it has been run on the server type

B (regardless the CPU usage) or (ii) its CPU usage has been

C0 in the case the server type is C.

1. if (T=T2 and R=R1) then KILLED 2

2. else if (T=T2 and R=R0) then KILLED 3

3. else if (T=T0 and R=R0 and P=High and D=D2 and

S=B) 5 then FINISHED 6

 4. else if (T=T0 and R=R0 and P=High and D=D2 and

C=C0 7 and S=C) then FINISHED 8

5. else if (P=MEDIUM) then FAILED 10

6. default FINISHED

 Differently from clustering and association rules,

decision list is a supervised technique because the model is

learned f222s+rom a labeled dataset (i.e., beside the

attributes matrix, the construction of the tree requires the

knowledge of the label of each workload unit). In this study,

the rules in the list that aim to catch the correct workload

units are deemed to be invariants; they are sorted by

decreasing number of correct units they detect.

5. Conclusion

 Invariants can be mined for a variety of service

computing systems, including cloud systems, web service

infrastructures, data centres, enterprise systems, IT services ,

network services. The identification and analyses of their

violations support a range of operational activities such as

anomaly detection, capacity planning. The results provide

suggestions to practitioners to establish the configuration of

the mining algorithms and to select the number of

invariants. A small number of invariants allows to reach a

high coverage, i.e. they can characterize the most of the

executions. Finally, we presented a general heuristic for

Vol. 1 Iss. 1 Year 2019 K. Sadhika /2019

 The Intl J Comp. Comm Inf , 30-38 | 38

selecting the likely invariants from a dataset. Finally, we

presented a general heuristic for selecting a set of likely

invariants from a dataset. All these results aim to fill the gap

between past scientific studies and the concrete usage of

likely system invariants by operations engineers.

6. References

[1] M. D. Ernst, J. Cockrell, W. G. Griswold, and D.

Notkin, Dynamically Discovering Likely Program

Invariants to Support Program Evolution, IEEE

Trans. Soft. Eng., 27(2001) 99–123.

[2] H. Chen, H. Cheng, G. Jiang, K. Yoshihira, Invariants

Based Failure Diagnosis in Distributed Computing

Systems, in Proc. 29th IEEE Int. Symp. Reliable Dis.

Sys., (2010) 160–166.

[3] G. Jiang, H. Chen, and K. Yoshihira, Modeling and

Tracking of Transaction Flow Dynamics for Fault

Detection in Complex Systems, IEEE Trans. on

Depen. Sec. Com., 3(2006) 312–326.

[4] G. Jiang, H. Chen, and K. Yoshihira, Efficient and

scalable algorithms for inferring likely invariants in

distributed systems, IEEE Trans. on Data and

Knowledge Eng., 19(2007) 1508–1523.

[5] H. Chen, H. Cheng, G. Jiang, and K. Yoshihira,

Exploiting Local and Global Invariants for the

Management of Large Scale Information Systems, in

Proc. 8th IEEE Int. Conference on Data Mining,

(2008) 113–122.

[6] F. Frattini, S. Sarkar, J. Khasnabish, and S. Russo,

Using Invariants for Anomaly Detection: The Case

Study of a SaaS Application, in Proc. 25th Int. Symp.

Software Reli. Eng. Work., (2014) 383–388.

[7] X. Chen, C.-D. Lu, and K. Pattabiraman, Failure

Analysis of Jobs in Compute Clouds: A Google

Cluster Case Study, in Proc. 25th Int. Symp. Soft.

Reli. Eng., (2014) 167–177.

[8] C. Pacheco and M. D. Ernst, Eclat: Automatic

Generation and Classification of Test Inputs, in Proc.

19th Eur. Conf. Object Oriented Pro., Springer

(2005), 504–527.

[9] C. Csallner and Y. Smaragdakis, Dynamically

discovering likely interface specifications, in Proc.

28th Int. Conf. Software Eng. (2006) 861–864.

[10] L. Mariani, S. Papagiannakis, and M. Pezzè,

Compatibility and regression testing of COTS-

component-based software, in Proc. 29th Int. Conf.

Soft. Eng. (2007) ACM.

[11] J. Cobb, J. A. Jones, G. M. Kapfhammer, and M. J.

Harrold, Dynamic Invariant Detection for Relational

Databases, in Proc. 9th Int. Workshop on Dynamic

Analysis, ACM (2011) 12–17.

About The License

© 2019 The Authors. This work is licensed under a Creative

Commons Attribution 4.0 International License which

permits unrestricted use, provided the original author and

source are credited.

