
 

Int. J. Comput. Commun. Inf. , 41-57 / 41 

D
O

I:
  
 

R
E

S
E

A
R

C
H

 A
R

T
IC

L
E

 

D
O

I:
 1

0
.3

4
2

5
6

/
ij

cc
i2

5
1

4
 

A Comparative Analysis of Machine Learning Models for Stroke 

Prediction 

Kripa Mary Jose
 a, *

, Nizar Banu 
a

, A. Melvin Infant 
a

 

a

 Department of Computer Science and Engineering, Christ Deemed to be University Bangalore, 

Karnataka, India 

* Corresponding Author: josekripamary99@gmail.com 

Received: 29-01-2025, Revised: 06-04-2025, Accepted: 17-04-2025, Published: 22-04-2025 

 

Abstract: Stroke is a leading global health burden, and there is an urgent need for improvement 

in risk prediction and treatment. This paper examines the capability of several machine learning 

algorithms, including Decision Trees, Random Forests, Neural Networks, Support Vector 

Machines (SVMs), Elastic Nets, and Lasso, to predict stroke risk on four cardiovascular and 

stroke datasets. The results indicate that Decision Trees and Random Forests are always better 

than Neural Networks, although Neural Networks show promising accuracy. SVMs are 

consistent, while the Elastic Net and Lasso models give average results. 

Keywords: Stroke, Machine Learning, Risk Prediction, Decision Trees, Random Forests, 
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1. Introduction 

Severe medical condition-stroke-an instantaneous blockage within the system-the results 

of which, if nothing happens to reverse that blockage, can lead to serious devastations. According 

to definitions there are two distinct types: TIA- ischemic (and hemorrhagic). TIA-ischemic takes 

place when one’s cerebral flow is diminished, primarily via a blood clot, lowering the oxygen 

reaching the cerebral cells. Hemorrhagic strokes, on the other hand, entail bleeding in the brain 

caused by the rupture of weaker blood vessels [1]. Both types of strokes require rapid medical 

intervention to prevent brain damage and enhance results. Mainly, symptoms include weak- ness 

or paralysis, numbness or tingling, trouble with speak- ing or speech understanding, impairment 

of vision, severe headaches, dizziness, and coordination lack [1]. Early detection is critical as it 

may substantially minimize the severity of the stroke, preventing further damage or even death. 

Many risk factors are involved in the development of stroke especially advancing ages such as 

high blood pressure, heart disease, diabetes, smoking, obesity, high cholesterol levels, physical 

inactivity, and excessive alcohol consumption. Prevention of stroke requires adequate 

management of these risk factors through lifestyle modification and pharmacological treatment. 
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ML refers to artificial intelligence technology in support of systems learning patterns or rules 

from given data. Modern progress made in machine learning enables us to make stroke 

prediction models far more accurate than previously seen. Pre- vious studies have reported that 

the SVM algorithm achieved a high score of 96. 74% precision. This paper uses machine-learning 

algorithms for their performance in stroke prediction through cross-validation of various datasets. 

Here, Decision Trees, Random Forests, Neural Networks, Support Vector Machines, Elastic 

Nets, and Lasso are carefully tested to understand their predictiveness along with the 

appropriateness for stroke risk analysis [1, 2]. 

 

2. Literature Review 

In their study, Nojood Alageel, Rahaf Alharbi, and col- leagues investigate the advantages 

of machine learning in stroke prediction using multiple datasets. They used Kaggle and local 

hospital datasets for stroke prediction and machine learning models like Stacking, Decision Tree, 

and Random Forest. Notably, they discovered that the NB classifier had the lowest accuracy level 

(86%), but other algorithms achieved comparable accuracies, f1 scores, precision, and recall [3]. 

Elias Dritsas, Maria Trigk, et al. drew emphasis on the substantial impact of stroke, which 

affects millions of people each year and causes death and disability. Their research finds factors 

that increase stroke risk, such as age, hypertension, and smoking. Interestingly, their research 

shows that the stacking approach surpasses the RF, 3-NN, and DT models, with all models 

significantly outperforming recall, F measure, and precision [4]. 

Rishna Mridha et al. investigate how Explainable AI (XAI) techniques improve stroke 

prediction by offering human- readable explanations. The proposed machine learning tech- 

nique obtained up to 91% prediction accuracy. Their study, which employs SHAP and LIME 

explainable approaches, provides vital insights into model decision making. They conclude that 

complicated models beat simpler models in stroke prediction accuracy, with their top model 

scoring nearly 91% [5]. 

S. Sahriar , S. Akther et al. said that the disease stroke is currently on the increase in 

incidence globally. From statistics, some contributions are coming to morbidity and mortality all 

over the globe. ML provided promising tool for the early prediction or risk assessment of stroke, 

still facing some inconsistencies in available data [6]. 

T. Priyadarshini, A. Hameed et al. studied the application of machine learning 

algorithms for stroke risk forecasting. They showed that ensemble-based methods such as RF 

and Naive Bayes may be used to model stroke risks based on patient data and that ML methods 

outperform traditional statistical methods by significant margins in terms of both accuracy and 

prediction time[7]. A. Gupta , N. Mishra et al assessed multiple machine learning algorithms, 

including Stacking, Random Forest, and PCA-based methods. Their findings demonstrated that 
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these algorithms exhibited high pre- diction accuracy, with ensemble methods outperforming 

single classifiers by improving sensitivity and specificity metrics [8]. 

G. Barmparis , M. Marketou et al. used a Stacking ensemble method and achieved an 

AUC score of 98.9 in stroke risk prediction models. Their findings indicate that ensemble learn- 

ing with multiple classifiers improves prediction performance by combining diverse feature 

representations [9]. N. Biswas et al. demonstrated that the Random Forest models were better 

than other machine learning classifiers, with up to 92.55% accuracy and an AUC of 98.15. The 

results indicate that adaptability of the RF classifier to medical datasets makes it one of the most 

effective tools for stroke prognosis [10]. K. Akash et al. have focused on the most critical issues 

when using ML for stroke prediction, such as robustness problems and data costs. In this regard, 

imaging data is very expensive and causes overfitting that negatively impacts generalization across 

various populations [11]. 

The researchers Y. Chahine et al. investigated behavioral risk factors for stroke by 

demonstrating how Naive Bayes and K-means clustering of ML could be used in risk 

assessments, and they highlighted the role of sensitivity and specificity as metrics to assess 

predictive accuracy [12]. M. Chun, R. Clarke et al discussed using the electronic health record 

(EHRs) as critical input in a ML predictive model of a stroke and concluded that evaluating 

history and demography from ML results into early detection and optimum distribution of health 

services towards risker patients [13]. J. Amann et al. showed that neural networks performed best 

for stroke prediction, with a high accuracy rate of 95.16%, as compared to other ML algorithms 

like Logistic Regression and KNN. Their study indicates the strength of neural networks in 

detecting nonlinear patterns in complex medical datasets [14]. A. Jamthikar, D. Gupta et al. 

reported that Random Forest models, when combined with advanced hyperparameter tuning 

techniques, achieved accuracy levels of 99.87%. Their work highlights the importance of 

optimizing hyperparameters for ML models’ performance in real-world medical prediction tasks 

[15]. G. Sailasya et al., however, have given a rather wholesome idea of how the techniques 

applied by machine learning, namely, Random Forest, KNN, and Stacking Classifiers, have 

enhanced the accuracy of stroke prediction models. Here it was confirmed that the techniques 

such as SMOTE, dealing with class imbalances, has been the major part which improved the 

rates of predictions, and the models gained up to 96.7% accuracy[16]. 

 

3. Dataset and Preprocessing 

3.1 About Datasets 

The first is the Brain dataset, contains 11 columns and 4981 entries. The columns 

include information such as gender, age, hypertension, heart disease, and smoking status, as well 

as the goal variable ”stroke.” This dataset is likely to contain information regarding people’s 

health and if they have had a stroke. The attributes include demographic and health- related data 
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such as gender, age, hypertension, heart disease, marital status, type of work,residence type, 

average glucose level, body mass index (BMI), smoking status, and stroke occurrence. 

The second, Diabetics dataset consists of 18 columns and 28119 entries. Similar to the 

first dataset, it contains information about health and medical conditions, such as age, gender, 

cholesterol levels, and whether the individual has had a heart disease attack. The attributes 

include age, sex, high cholesterol (presence or absence), cholesterol check history, BMI (body 

mass index), smoking status, history of heart disease attack, physical activity level, fruit 

consumption, vegetable consumption, heavy alcohol consumption (presence or absence), 

general health status, mental health status, phys- ical health status, difficulty in walking, and stroke 

occurrence (presence or absence). 

The third, Heart dataset contains 12 columns and 918 entries. It includes information 

such as age, gender, chest pain kind, resting blood pressure, and whether the person has cardiac 

disease. This dataset appears to focus on car- diovascular health markers and could be useful for 

predictive modeling or study of heart diseases. It contains attributes such as age, sex, chest pain 

type, resting blood pressure, cholesterol level, fasting blood sugar level, resting 

electrocardiographic re- sults, maximum heart rate achieved during exercise, exercise- induced 

angina (presence or absence), oldpeak (ST depression induced by exercise relative to rest), slope 

of the peak exer- cise ST segment, and heart disease occurrence (presence or absence). 

The fourth is the Heart Failure dataset, has 13 columns and 299 items. It covers variables 

such as age, anemia, diabetes, ejection fraction, and smoking status, as do the other databases. 

This dataset may be smaller in size, but it still contains valuable health-related information that 

can be utilized for a variety of analytical reasons, such as investigat- ing the association between 

these characteristics and health outcomes.The attributes consist of age, anemia (presence or 

absence), creatinine phosphokinase level, diabetes (presence or absence), ejection fraction, high 

blood pressure (presence or absence), platelets count, serum creatinine level, serum sodium 

level, sex, smoking status, time (follow-up period), and death event occurrence (presence or 

absence). The datasets are taken from Kaggle repository and reasearch papers. 

 

3.2 Preprocessing 

3.2.1 Brain Dataset 

There were no null values in the data. But, upon closer inspection, it was found that the 

”smok- ing status” column had ”unknown” entries. These were re- placed by mode since the 

variable was categorical. Label encoding was used on ”smoking status”, ”work type”, and ”ever 

married” columns and one-hot encoding was used on ”residence type” and ”gender”. Standard 

scaling was used for ”bmi”, ”avg gluce level”, and ”age” to normalize this data set as shown in 

Figure 1. An imbalance data was also observed, for which 4981 occurances of stroke =0 and only 
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13 instances of stroke =1” as shown in figure 2. The issues of imbalance were resolved by 

SMOTE and undersampling techniques, respectively. 

Figure 1. Distribution of Age, Average Glucose and bmi 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Count plot for hypertension, heart disease, work type and smoking status 

 

3.2.2 Diabetics Dataset 

No null values in the data. The corre- lation matrix analysis has revealed that “HighBP” 

and “Heart- DiseaseorAttack” are most negatively correlated with the target variable “stroke”. 

However, the most positive correlation is for “Diabetes”, “HighChol”, and 

“HvyAlcoholConsump” with the target variable. “PhysHlth”, “Veggies”, “Fruits”, “CholCheck”, 

and “Sex” have weak correlations. Methods such as SMOTE and undersampling are applied 
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when dealing with the class imbalance between the 4395 cases of stroke = 0 and the 66297 cases 

of stroke = -1. 

 

3.2.3 Heart Dataset: 

There were no null values in the dataset. The categorical variables, which included “Sex”, 

“ChestPainType”, “RestingECG”, “ExerciseAngina”, and “ST Slope” columns, are encoded 

using label encoding then standardized to the common scale. Perfect multicollinearity noted on 

the variable ”ChestPainType,” which was removed from the analysis to avoid bias in results. 

 

3.2.4 Heart Failure Dataset:  

There were no null values in the data. The age column was binned for further analysis, 

and then it was label encoded for the model’s suitability. The dataset then passed through 

standardization for fea- tures. It was observed that there is no imbalance of data. Features that 

are taken by considering VIF and correlation matrix are “creatinine phosphokinase”, “anaemia”, 

“diabetes”, “high blood pressure”, “serum sodium”, and “time” with “DEATH EVENT” as 

the target variable. 

 

4. Methodology 

Machine learning transforms systems by allowing them to learn and improve 

autonomously from historical data, identifying patterns that guide future decision making without 

requiring human intervention. 

 

4.1 Proposed Workflow 

The machine learning algorithms starting from the Decision tree, Random Forest , 

Neural Network, Support Vector Machine, Lasso and ElasticNet have been applied to the 

datasets and the workflow is shown in Figure3 80% of the datasets are divided into training and 

20% to testing. 

 

4.2 Implementation 

4.2.1 Decision Tree 

A decision tree is a widely used supervised learning algorithm for classification and 

regression tasks in machine learning. A decision tree constructs a model to predict a target 

variable by learning easy-to-understand decision rules from data attributes. It is a flowchart-like 

structure where each internal node is a feature or attribute, each branch is a decision based on 

that feature, and each leaf node is the predicted class or outcome. 
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Figure 3. Workflow of the proposed model 

The node at the top is termed as the root node and refers to the best predictor. Decision 

trees can support categorical as well as numerical data. Formula for classification trees: 

 

 

Where: 

 D is the dataset, 

 c is the number of classes, 

 pi is the probability of class i. Entropy (for Classification Trees): 

 

Where: 

 D is the dataset, 

 c is the number of classes, 

 pi is the probability of class i. Information Gain: 

 

Where: 

 D is the dataset, 

 A is a feature, 

 Dv is the subset of D for which feature A has value v, 
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 |D| is the total number of examples in the dataset, 

 |Dv| is the number of examples in Dv. 

The decision tree algorithm classifies data points step by step. The first is choosing the 

best feature to split, after which the algorithm checks for splits using metrics such as Gini impurity 

or entropy, then splits the data in recursive partitioning by taking a subset based on a feature 

selected until purity or a maximum depth is achieved. The assigned class labels of the majority 

class samples in the leaf nodes, then the algorithm makes predictions using the appropriate class 

label from the traverse tree by assessing feature values. It systematically approaches issues and 

solves them for good classification. This makes it very efficient with various data sets. 

 

4.2.2 Random Forest 

Random Forest is an ensemble learn-ing technique in which several decision trees are 

combined to increase the predictability accuracy and limit overfitting. Random Forest is an 

ensemble learning method which uses de- cision trees for increased prediction power as well as 

to prevent overfitting. There are several key steps to it: First, it makes use of bootstrapping, that 

is, sampling with replacement to create multiple subsets of the training data for each decision 

tree. Then, at every node of the decision trees, only a random subset of features is considered to 

split. Feature randomness decreases the correlation between trees and introduces diversity within 

the ensemble. Each decision tree is trained separately on the bootstrapped samples and feature 

subsets to the maximum depth or the minimum number of samples within a leaf node Once the 

decision trees are built, a Random Forest aggre- gates the results of these decision trees based on 

a voting mechanism if the task is classification and average if the task is regression. This ensures 

the final prediction will be sound and accurate, combining all the wisdom from any and all 

decision trees that make up the forest. Indeed, a combination of strengths from a number of 

trees and neutralization of respective individual weaknesses would make Random Forest seem a 

very effective and versatile tool to solve many machine learning applications. 

 

4.2.3 Neural Networks 

Neural networks are a machine-learning algorithm that is designed based on the structure 

and functioning of the human brain. A node or neuron, connected in several layers, namely, input 

layer, one or more hidden layers, and output layer, constitutes a neural network. Each link has a 

weight, which specifies the strength of that link. 

It essentially consists of two major stages in the neural network, namely forward 

propagation and backpropagation. Forward propagation is the input data that feeds into the 

network and runs through the layers with the calculations to create a prediction. Error is 

computed as a comparison between the output and actual target values. 
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During the process of backpropagation, an error is propa- gated backward from the 

network, and weight adjustments on the connections minimize the error. This goes on in an 

iterative forward and backward propagation until the network becomes satisfactory in its 

performance. 

The formula for the output of a neuron in a neural network is typically represented as: 

 

 

where: 

 z is the weighted sum of inputs and biases, 

 wi represents the weights associated with each input xi, 

 xi denotes the input values, 

 b is the bias term, 

 n is the number of inputs. 

The output of the neuron is then calculated using an activation function f (z): 

𝑦 =  𝑓 (𝑧) 

The loss function used here is Binary Crossentropy, which is perhaps one of the most 

commonly used loss functions for binary classification problems. It is the difference between true 

labels and the predicted probabilities in binary classification tasks, and Adam is being used as the 

optimizer. 

 

4.2.4 Support Vector Machine 

Support Vector Machine is perhaps a supervised machine-learning algorithm that will 

be used for classification and regression tasks. While SVM seeks the best of the hyperplanes, 

which maximally separates the data, points into different classes, it maximizes the margin between 

classes in classification. 1. Linear SVM for Binary Classifi- cation: For linearly separable data, the 

decision boundary or simply called hyperplane is represented as: wT x + b = 0 where: 

- w is the weight vector. - x is the input feature vector. – b is the bias term. 

The distance between a data point and the decision boundary is given by: 

 

4.2.5 Lasso 

 Lasso is an acronym for Least Absolute Shrinkage and Selection Operator. It is a technique 

of linear re- gression for feature selection and regularization. It introduces a penalty term to the 
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regular linear regression objective function. This penalty prevents overfitting and favors simpler 

models by shrinking the coefficients of the less important features towards zero. The Lasso 

regression objective function is stated as: 

 

 y represents the target variable vector, 

 X represents the feature matrix, 

 β represents the coefficient vector to be estimated, 

 -  2 denotes the L2 norm (Euclidean norm) of a vector, 

 -  1 denotes the L1 norm (absolute value sum) of a vector, 

 α is the regularization parameter that controls the strength of the penalty term. 

 

4.2.6 ElasticNet 

Elastic Net is the method of regularized regression, where both penalties of Lasso, 

known as L1 regularization and Ridge, also called L2 regularization, are merged to try to 

overcome the weaknesses in both of them. These will have a balance between variable selection 

from Lasso and coefficient shrinkage in Ridge. The Elastic Net objective function is represented 

by: 

• y represents the target variable vector, 

• X represents the feature matrix, 

• β represents the coefficient vector to be estimated, 

• - 1 denotes the L1 norm (absolute value sum) of a vector, 

• -  2 denotes the L2 norm (Euclidean norm) of a vector, 

• α is the regularization parameter that controls the overall strength of the penalty term, and ρ 

is the mixing parameter that controls the balance between Lasso (when ρ = 1) and Ridge (when 

ρ = 0) penalties. 

 

4.3 Evaluation Metrics 

  In classification problems, the over- all performance of a predictive model is often 

evaluated using accuracy as a common assessment metric. It reflects the number of correct 

classifications made out of all instances in the dataset. Accuracy is computed using: 
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Mathematically, if TP denotes the count of actual positive instances correctly classified, 

TN denotes the count of actual negative instances correctly classified, FP denotes the count of 

actual negative instances misclassified as positive and FN denotes the count of actual positive 

instances misclassified as a negative one, then accuracy can be defined as:The formula for 

Accuracy is given by: 

 

 

where 

 TP (True Positives): The number of instances that are correctly predicted as positive. 

 TN (True Negatives): The number of instances that are correctly predicted as negative. 

 FP (False Positives): The number of instances that are incorrectly predicted as positive 

but actually negative. 

 FN (False Negatives): The number of instances that are incorrectly predicted as 

negative but actually positive. 

 

5. Result and Analysis 

The study used various figures 4-7 datasets to determine how effective different machine 

learning algorithms were at predicting strokes. Overall, Decision Trees and Random Forests 

performed the best, with excellent accuracy on most of the datasets. These are ideal for solving 

complicated classification issues in medical data. Their ability to spot subtle patterns within 

datasets makes them useful for predicting strokes in many populations and data distributions. 

The study also considered the influence of different sampling methods-smote and 

undersampling-on the performance of the models. SMOTE has a tendency to enhance 

prediction for rarely occurring outcomes-minority class-most of the time. However, it was not 

steady in its effectiveness on accuracy. For example, performance of a Support Vector Machine 

did not improve significantly when using dataset 1 with SMOTE. In parallel, Decision Trees and 

Random Forests demonstrated extraordi- nary robustness across numerous datasets, confirming 

their versatility and dependability in identifying nuanced patterns and trends in stroke data. Their 

ability to accommodate non-linear correlations and complicated feature interactions makes them 

indispensable in real-world applications where data distributions may be diverse. In contrast, the 

evaluation of regression models using Lasso and ElasticNet regularization approaches, as 

measured by mean squared error (MSE) for continuous variables related to stroke occurrence, 

revealed higher MSE values, indicating suboptimal model fit. This implies that linear regression 

is insufficient for capturing the subtle interactions between characteristics and stroke risk, 

emphasizing the importance of considering nonlinear relationships in predictive models for 

stroke prediction. 
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Figure 4. Brain Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Diabetics Dataset 
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Figure 6. Heart Dataset 

 

 

 

 

 

 

 

 

 

Figure 7. Heart Failure Dataset 

 

Table 1. Accuracy and Mse For Brain Dataset 

Model Accuracy MSE 

Decision Tree (Undersampling) 0.71 - 

Decision Tree (SMOTE) 0.89 - 

Random Forest (Undersampling) 0.69 - 

Random Forest (SMOTE) 0.91 - 

Random Forest (SMOTE 1) 0.90 - 

Neural Network 0.89 - 

SVM (Undersampling) 0.89 - 
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SVM (SMOTE) 0.76 - 

MSE (Lasso, SMOTE)  0.19 

MSE (Lasso, Undersampling)  0.10 

MSE (ElasticNet, Undersampling)  0.19 

MSE (ElasticNet, SMOTE)  0.09 

 

Table 2. Accuracy And Mse For Diabetics Dataset 

Model Accuracy MSE 

Decision Tree (SMOTE) 0.88 - 

Decision Tree (Undersampling) 0.68 - 

Random Forest (SMOTE) 0.88 - 

Neural Network (SMOTE) 0.88 - 

SVM (SMOTE) 0.88 - 

MSE (Lasso, Undersampling) - 0.25 

MSE (ElasticNet, Undersampling) - 0.23 

 

Table 3. Accuracy And Mse For Heart Dataset 

Model Accuracy MSE 

Decision Tree 0.85 - 

Random Forest 0.84 - 

SVM 0.66 - 

MSE (Lasso) - 0.82 

MSE (ElasticNet) - 0.20 

 

Table 4. Accuracy and Mse For Heart Failure Dataset 

Model Accuracy MSE 

Decision Tree 0.73 - 

Random Forest 0.78 - 

Neural Network 0.72 - 

SVM 0.21 - 

MSE (Lasso) - 0.21 

MSE (ElasticNet) - 0.20 

 

The accuracy and the mean squared details for all the datasets are shown in the tables1, 

2, 3, 4. 



Vol. 7 Iss. 1 Year 2025 Kripa Mary Jose et al /2025 

Int. J. Comput. Commun. Inf., 41-57 / 55 

6. Conclusion 

Based on careful inspection of many datasets, there are sev- eral key general results about 

the performance and sensitivity of machine learning algorithms at the task of stroke prediction. 

First, Decision Trees and Random Forests always attain the best possible accuracies with 

essentially all datasets, making clear that they are remarkably capable of capturing very complex 

forms in the data. This kind of consistency talks about their potential to be implemented in real-

world applications regarding assessing stroke risk. Moreover, as Neural Net- works are 

performing competitively for identifying complex correlations and patterns of the data, though 

performance may be inconsistent, SVM leads to consistent performance in different datasets, 

which reveals their reliability in dealing with changing types of data distributions. 

Additionally, the importance of SMOTE and under- sampling techniques with the 

performance of the model by sampling is noteworthy. For instance, even though in general terms 

SMOTE increases the precision levels of minor class prediction by a sizeable amount, that does 

not happen at the model performance all the time; it tends to differ while choosing between such 

methods appropriate to a dataset type and nature. In addition, Lasso and ElasticNet regression 

models may be applied in analyzing the predictive capability of continuous variables with respect 

to stroke occurrence by making use of MSE. However, their somewhat lower accuracy ratings 

may pose some challenges in capturing the complex interactions between characteristics and 

stroke risk. 

In conclusion, each of these models-Decision Trees, Ran- dom Forests, Neural 

Networks, SVMs-performs exceptionally in stroke prediction tests. Appropriate evaluation of 

sample methodologies and feature selection strategies is critical to improvise the accuracy and 

generalization of the model. In conclusion, further research efforts intended at refining existing 

models along with novel methodologies are more than necessary to enhance accuracy in stroke 

prediction and patients’ outcomes in the hospital setting. 

 

7. Research Gap 

The gap in research lies in the less explored potential of marrying machine learning with 

neuroplasticity datasets to establish individualized stroke recovery plans at critical time windows. 

Moreover, not enough studies have been conducted about the long-term impacts of rehabilitation 

interventions and the application of novel technologies like virtual reality. Inequitable and 

culturally insensitive practice developments are further limited by under researched 

socioeconomic and cultural factors influencing stroke rehabilitation outcomes. Addressing these 

gaps is therefore fundamental to the advance- ment of stroke rehabilitation and improved patient 

outcomes. 
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