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Abstract: This research work compares the effectiveness of bitmap fuzzing between two 

prominent algorithms exploited in LibFuzzer and AFL, aimed at identifying vulnerabilities in 

software handling bitmap images. Bitmap fuzzing generates varied image-based test cases that 

rigorously test software, revealing potential security flaws. In this analysis, LibFuzzer, an in-

process guided fuzzer, and AFL, an external fuzzer driven by coverage feedback, are both utilized 

to evaluate their accuracy in detecting errors within bitmap-processing applications. The 

performance is assessed based on the types and frequency of errors found, offering a layered 

perspective on error-handling strength in image processing contexts. By recording software 

crashes and categorizing the faults, this proposed research provides important insights into the 

comparative strengths and limitations of these fuzzing tools. The experimental results aid 

significant improvements in fuzzing practices, enhancing security frameworks by enabling early 

identification of vulnerabilities in multimedia-focused applications. The devised comparative 

research highlights the critical role of fuzzing tools in building robust, resilient software defenses. 

Keywords: Bitmap Fuzzing, LibFuzzer, AFL, Fuzz Testing 

1. Introduction 

Fuzz testing has emerged as a key technique for identifying software vulnerabilities, 

particularly in file format parsers where complex data structures are common. Bitmap file 

formats, like BMP, are often targeted due to their widespread use and the complexity involved 

in parsing various pixel structures and metadata, making them prone to errors that could lead to 

security vulnerabilities. Bitmap fuzzing operates by inputting malformed or randomly generated 

data into bitmap parsers to detect potential flaws that could otherwise remain hidden during 

traditional testing. 
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LibFuzzer and AFL are two widely used fuzzing tools, each employing unique strategies 

to identify software vulnerabilities. LibFuzzer works as an in-process fuzzer, repeatedly executing 

the target program with various inputs to explore diverse code paths, making it particularly 

effective for analyzing specific file formats by leveraging instrumentation for precise memory 

detection [1]. In contrast, AFL utilizes a coverage-guided approach, employing genetic algorithms 

to optimize test case generation based on feedback from code coverage, which enhances its 

efficiency in uncovering vulnerabilities across different applications [2, 3]. Tools like 

FormatFuzzer build on LibFuzzer’s format-specific capabilities, enabling it to handle structured 

inputs such as bitmaps effectively [4]. Similarly, AFL’s versatility is augmented by innovations 

like CrFuzz, which improves its performance in multi-purpose programs by optimizing input 

validation and coverage, highlighting the complementary strengths of both fuzzers in addressing 

diverse fuzzing challenges [5].        

This section discusses the significance of fuzz testing in enhancing software security. Fuzz 

testing is a dynamic approach that helps identify potential vulnerabilities by providing a program 

with random, unexpected, or malformed input data. It is particularly effective at uncovering hard-

to-detect issues, such as memory corruption, buffer overflows, or improper input validation that 

can be exploited by attackers. In the context of file parsers, especially for complex formats like 

bitmap images, fuzz testing is essential for discovering flaws in how data is handled. Malformed 

files, if not properly validated, can lead to critical vulnerabilities such as remote code execution 

or crashes, and fuzz testing helps to expose these issues by simulating a wide range of abnormal 

inputs. 

Additionally, fuzz testing is valued for its scalability and efficiency. Unlike traditional 

manual testing methods, fuzzing can automatically generate large volumes of diverse test cases, 

covering edge scenarios that are difficult to anticipate. This scalability allows it to run 

continuously, providing comprehensive coverage and identifying issues faster than conventional 

approaches. By detecting vulnerabilities early in the development process, fuzz testing also 

reduces the cost and effort associated with strengthening security errors later on. As a result, fuzz 

testing has become an vital tool for software developers and security professionals, ensuring that 

applications are more strong to cyber threats and reducing the risk of security breaches. 

This study provides a comparative analysis of LibFuzzer and AFL by examining their 

respective concerts in bitmap fuzzing. Through systematic testing, this study assesses which tool 

is more effective in uncovering vulnerabilities specific to bitmap processing, a crucial 

consideration in secure image-handling applications. The structure of this work is as follows: 

Section 1 underscores the importance of fuzz testing in security, Section 2 reviews related 

literature, Section 3 outlines the experimental setup, Section 4 presents the comparative findings, 

and Section 5 discusses conclusions and potential areas for future research. 
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2.  Problem Statement 

Bitmap files are one of the most commonly used image formats, appreciated for their 

clear structure that includes both data and metadata. However, this very structure can become a 

double-edged sword, making bitmap files prone to issues like memory corruption, buffer 

overflows, and poor input validation. These vulnerabilities can lead to security breaches, software 

crashes, or even system instability, posing significant challenges for developers working on bitmap 

parsers. 

This research dives into addressing these problems by comparing two widely used 

fuzzing tools—LibFuzzer and AFL (American Fuzzy Lop). The study explores how each tool 

performs in detecting vulnerabilities in applications that process bitmap files. Specifically, it looks 

at how well they handle crash detection, code coverage, execution speed, and resource usage. 

The goal is to provide a clearer understanding of how these tools work, their unique 

strengths, and where they might fall short. By highlighting their performance, this research aims 

to improve software testing practices and contribute to building more secure and reliable systems 

for handling bitmap files. 

 

3. Literature Survey  

This section reviews the related research works and tools in fuzzing. 

Metzman, Jonathan, et al. FuzzBench provides an open platform for comparing the 

effectiveness of general-purpose fuzzers such as LibFuzzer, AFL, and honggfuzz. The study 

evaluates their ability to detect bugs and achieve code coverage across various applications. 

LibFuzzer excels in memory-related bugs, while honggfuzz leads in coverage metrics. This 

platform fosters standardized evaluation of fuzzing tools in different domains [6]. 

Kim et al. (2024) introduce AIMFuzz, an automated in-memory fuzzing tool designed 

for binary programs. It identifies and mutates critical memory regions and functions using 

dynamic taint tracking. AIMFuzz eliminates the need for manual intervention, improving 

efficiency and effectiveness in vulnerability detection. The tool demonstrates high success in 

detecting bugs within binary-only applications [7]. 

Liang and Hsiao (2021) propose icLibFuzzer, a version of LibFuzzer that isolates 

contexts to ensure consistent results. This approach resolves challenges in comparing fuzzing 

tools by reinitializing program states after crashes. Their experiments show icLibFuzzer achieves 

higher bug discovery rates and better coverage than competing tools. This research enhances the 

reliability of fuzzing in complex scenarios [8].  

Zhu (2021) addresses challenges in fuzzing, such as resource efficiency and test 

prioritization. The study proposes synthesized benchmarks and optimized scheduling to improve 

bug detection and reduce overhead. These methods enhance fuzzing performance by focusing 
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on critical areas of the code. This research provides a foundation for more effective vulnerability 

detection techniques [9].  

Maier (2023) explores feedback-guided fuzzing to uncover vulnerabilities in untested 

software. By adapting inputs based on program feedback, this technique improves bug discovery 

rates. The study demonstrates its effectiveness in revealing flaws in complex applications. 

Feedback-driven fuzzing is shown to significantly strengthen software security [10]. 

Strassle (2024) explores advanced fuzzing frameworks to identify vulnerabilities in C and 

C++ source code. The study emphasizes the importance of high-performance fuzzing to address 

increasing software complexity and associated security risks. By focusing on real-world open-

source projects, the research highlights how systematic fuzzing improves software robustness. 

This work provides a foundation for enhancing vulnerability detection in critical programming 

environments [11].  

Frighetto (2019) introduces a framework combining REVNG and LLVM LibFuzzer for 

coverage-guided binary fuzzing. The study tackles the challenges of fuzzing binary-only software 

by leveraging static binary translation to enable instrumentation and analysis. The proposed 

method achieves semantic preservation and effective bug discovery in executable programs. This 

approach underscores the potential of coverage-based fuzzing for securing memory-unsafe 

applications [12]. 

Fioraldi et al. (2023) provide an in-depth evaluation of American Fuzzy Lop (AFL) using 

the FuzzBench platform. Through nine experiments, the research examines AFL’s mutation 

strategies, feedback encoding, and scheduling methods. The findings reveal how design choices 

influence bug detection and code coverage, offering insights into improving modern fuzzing 

tools. This study advocates for refining AFL’s framework to enhance security testing practices 

[13]. 

Chafjiri, Sadegh Bamohabbat, et al. (2024) This research reviews the use of machine 

learning techniques in enhancing fuzzing for vulnerability detection. The paper highlights how 

machine learning can improve fuzzing efficiency by refining input generation and coverage 

prioritization. It shows that integrating machine learning with fuzzing techniques can significantly 

increase the discovery of security vulnerabilities [14]. 

De Almeida, FranciscoJoao Guimarães Coimbra (2019) This thesis focuses on methods 

for creating software tests that verify both functionality and the presence of flaws. It underscores 

the role of automated testing in boosting software reliability while shortening development cycles. 

The work advocates for systematic approaches to test generation to detect vulnerabilities early 

and ensure robust software development [15]. 
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4. Hypothesis 

LibFuzzer and AFL are two widely used fuzzing tools, each employing distinct strategies 

that make them suitable for identifying vulnerabilities in bitmap-processing applications. The 

hypothesis explores their strengths and differences, suggesting they offer complementary 

advantages in detecting software flaws. 

LibFuzzer is expected to excel in uncovering complex and deep-seated vulnerabilities 

due to its in-process, coverage-guided fuzzing approach. By operating directly within the 

application’s runtime, LibFuzzer uses real-time feedback to intelligently generate and mutate 

inputs that target specific code paths. This focused approach allows it to thoroughly explore 

critical sections of the code, particularly areas where subtle issues, such as heap buffer overflows 

or memory corruption, are likely to occur. Additionally, its design minimizes overhead, making 

it highly efficient in terms of execution speed and resource consumption. This efficiency enables 

it to test a large number of inputs in a short time, making it ideal for rapid vulnerability 

identification. 

Conversely, AFL (American Fuzzy Lop) is hypothesized to excel in discovering a 

broader range of crashes due to its genetic mutation-based fuzzing strategy. AFL mutates existing 

inputs and leverages feedback from the application to explore as many code paths as possible. 

Its ability to generate diverse and extensive test cases enables it to uncover vulnerabilities that 

may not be detected by more targeted approaches, such as segmentation faults, input size-related 

errors, or handling of malformed files. AFL’s strength lies in its capability to achieve higher 

overall code coverage, ensuring that even less frequently executed parts of the code are tested 

comprehensively. 

While LibFuzzer is predicted to be more efficient and precise, AFL’s broader 

exploration is likely to result in greater crash diversity and coverage. Together, these tools 

represent complementary approaches to fuzz testing. LibFuzzer is suitable for scenarios that 

require quick identification of critical bugs with minimal resource usage, while AFL is ideal for 

uncovering a wide variety of issues across the codebase. This study anticipates that the combined 

insights from both tools will provide a more holistic understanding of vulnerabilities, enabling 

the development of robust and secure bitmap-processing software. 

 

5. Methodology for bitmap fuzzing 

This study compares the effectiveness of two widely used fuzzing tools, LibFuzzer and 

AFL, in identifying vulnerabilities in bitmap processing functions. By setting up both tools within 

a controlled environment, we analyze their abilities to generate varied inputs, detect crashes, and 

manage resource consumption. The goal is to understand each fuzzer’s strengths and limitations 

by observing how they handle bitmap files, focusing on their efficiency, memory use, and bug 

detection capability. This section includes the following processes namely setup, testing, data 
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collection, and comparative analysis steps, offering insights into which fuzzer is better suited for 

bitmap file testing. 

Step 1: Setup Fuzzing Environment: Install and configure LibFuzzer and AFL on an 

Ubuntu server. Prepare a bitmap processing application as the fuzzing target. 

Step 2: LibFuzzer Bitmap Fuzzing: Run LibFuzzer on bitmap processing functions, 

generating inputs and logging crashes, memory use, and crash details. 

Step 3: AFL Bitmap Fuzzing: Instrument the target application with AFL, using a bitmap 

seed for mutations, and capture any crash data and memory/resource use. 

Step 4: Data Logging and Monitoring: Log all inputs, crash data, and memory/CPU 

usage for both fuzzers to analyze efficiency and performance. 

Step 5: Data Analysis: Compare each fuzzer on crash count, memory use, and code 

coverage; identity common vulnerabilities. 

 

 

 

 

 

 

Figure 1. Flowchart of bitmap fuzzing 

 

5.1 Bitmap fuzzing design 

5.1.1 Objective 

The goal is to assess the capabilities of two fuzzing tools, LibFuzzer and AFL, in testing 

the stability of bitmap processing functions. This includes detecting vulnerabilities and evaluating 

the performance of each tool in identifying errors. 

 

5.1.2 System Overview 

The design involves two key components: the Fuzzing Engine and the Bitmap 

Processing Target. The fuzzing engines generate mutated bitmap files, which are then processed 

by the target application designed to simulate the processing of bitmap images. 

LibFuzzer: An in-process tool that targets specific code paths in bitmap processing 

functions. 
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AFL (American Fuzzy Lop): A binary-level fuzzer that utilizes coverage feedback to 

guide input mutations. 

Bitmap Processing Target: A simple application designed to load, parse, and manipulate 

bitmap files, acting as the vulnerable system being tested. 

 

5.1.3 Input Generation 

               Bitmap Seed Files: Both fuzzers begin with a set of initial bitmap images to mutate and 

generate new test cases. 

                Mutation Techniques: These include altering byte sequences, flipping bits, and 

introducing random data changes to stress the bitmap processing functions. 

 

5.1.4 Fuzzing Execution 

LibFuzzer 

1)  Uses internal feedback to mutate the bitmap data and direct testing toward different 

execution paths in the target code. 

2) The mutated data is processed using a function like LLVMFuzzerTestOneInput. 

AFL 

1) Relies on coverage-guided fuzzing, where it generates bitmap variations and uses 

execution feedback to guide the process. 

2) Logs any crashes or unusual behavior during execution, providing a record of errors for 

later analysis. 

 

5.1.5 Crash Detection 

 Both fuzzers capture crashes such as buffer overflows, invalid memory access, or other 

runtime exceptions. 

 All relevant details, including the inputs, error logs, and system resource usage, are 

recorded for further review. 

 

5.1.6 Performance Evaluation 

 The performance evaluation compares LibFuzzer and AFL based on several metrics, 

including crash detection, code coverage, execution speed, and memory usage. Crash detection 

measures how many vulnerabilities each tool uncovers. Code coverage evaluates how thoroughly 
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each tool tests the bitmap processing functions. Execution speed and memory usage determine 

how efficient and resource-intensive each fuzzer is during testing. 

 

5.1.6 Data Analysis 

  Data analysis involves comparing the results from LibFuzzer and AFL to assess their 

effectiveness. The types of vulnerabilities found by each tool are examined to identify which 

fuzzer performs better. Code coverage is analyzed to see how much of the bitmap processing 

code is tested. Insights gained from the comparison help identify improvements for the fuzzing 

process. 

 

5.2 Bitmap fuzzing Architecture 

 In this section input Generation phase, a diverse set of test cases is created to challenge 

the bitmap processing system. This is achieved using two approaches: creating random inputs 

from scratch and modifying valid bitmap files. Generating inputs from scratch allows the system 

to encounter highly unpredictable data, testing its resilience to unexpected structures. Modifying 

existing bitmap files, on the other hand, provides slight alterations of valid files, which simulates 

more realistic but varied scenarios, helping to identify vulnerabilities that might arise under real-

world usage. 

 Once inputs are generated, they are passed through two popular Fuzzing Tools: 

LibFuzzer and AFL. LibFuzzer applies coverage-guided fuzzing, which tracks code coverage and 

adjusts inputs dynamically to explore unexplored code paths, enhancing the chance of finding 

hidden vulnerabilities. AFL (American Fuzzy Lop) uses a genetic mutation-based approach to 

create diverse inputs that explore different states of the program. The combination of 

LibFuzzer’s coverage-guided approach and AFL’s mutation strategy ensures a broad exploration 

of the system’s capabilities and limitation=s. 

The Crash Analysis phase focuses on understanding the causes of any crashes or 

unexpected behaviors that occur during fuzzing. Here, each crash is examined to uncover the 

specific issue, such as memory errors, buffer overflows, or improper handling of malformed 

inputs. This analysis provides valuable insights into the nature and severity of each vulnerability, 

helping to prioritize fixes and enhance the strength of the system. 

Finally, the Output stage compiles a summary of the findings, detailing the vulnerabilities 

discovered, their potential impact, and recommendations for justification. This comprehensive 

approach to fuzzing and analysis provides a thorough examination of bitmap handling, ensuring 

that critical weaknesses are identified and can be addressed to improve security and stability. This 

methodology not only aims to detect vulnerabilities but also to provide actionable insights for 

strengthening the overall resilience of the bitmap processing system. The architecture of the both 

LibFuzzer and AFL tool is shown in the figure Figure 3. 
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The workflow begins with generating inputs for fuzzing, then debugging the executable 

for crashes, and finally assessing code coverage to evaluate performance. The comparison 

includes examining each tool's efficiency and robustness in detecting vulnerabilities in bitmap 

processing. The analysis highlights insights into the effectiveness of each fuzzer based on 

observed crash rates and coverage results. The workflow of fuzz testing is shown in the figure 

Figure 2. 

 

 

 

 

 

 

 

 

 

Figure 2. fuzz testing diagram 

 

6.  Results and Discussion:  

 In this section, we present the outcomes of fuzz testing a bitmap file parser using two 

prominent fuzzing tools, LibFuzzer and AFL. Both tools were used to fuzz the bitmap file parser, 

with the goal of identifying potential crashes or vulnerabilities caused by malformed bitmap files. 

The fuzzing process focused on detecting memory access violations, crashes, and other errors in 

the parser when processing corrupted bitmap files. 

 

6.1 Crashes Detected: 

LibFuzzer:  

The fuzz testing with LibFuzzer resulted in the detection of a heap buffer overflow. This 

occurred when the parser processed malformed bitmap data that led to the analyzer overwriting 

memory beyond the allocated buffer. Heap buffer overflows are serious weaknesses that could 

be exploited to execute random code or cause other severe security issues in the application. 
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Figure 3. Architecture Diagram of bitmap fuzzing 

AFL 

On the other hand, AFL identified two distinct issues: 

 A segmentation fault: This occurred when the parser attempted to access invalid 

memory due to improper parsing of the bitmap header, a common issue when there is 

faulty memory management. 
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 An error due to file size being too small: This error was triggered when AFL mutated 

the bitmap file into an unusually small size that the parser was not designed to handle. 

The parser failed to process the file, indicating that it lacked proper checks for handling 

files of inappropriate sizes. 

 

Code coverage 

While precise code coverage percentages were not provided, it is generally expected that 

LibFuzzer focused on high-quality, targeted mutations that affected the most critical code paths 

in the bitmap parser. These would likely include areas responsible for processing the bitmap 

header and pixel data. 

 

AFL 

On the other hand, uses a genetic algorithm to explore a wider variety of input mutations. 

This broad exploration allows AFL to cover more potential code paths, which could lead to the 

detection of a larger set of issues compared to LibFuzzer. 

 

Execution Time 

Both fuzzing tools were run for one hour, during which they generated mutated bitmap files 

and tested them against the bitmap file parser. 

 LibFuzzer is known for its efficiency, executing fuzz tests rapidly by running all 

operations in-process. This allows it to quickly generate input mutations and test them, 

leading to the fast identification of issues, such as the heap buffer overflow. 

 AFL, while typically slower than LibFuzzer due to its external process-based fuzzing 

model, completed the fuzzing session within the same timeframe. This indicates that, 

despite its usually slower fuzzing cycle, AFL was still able to generate and test a sufficient 

number of mutated inputs within the hour. 

 

 Efficiency: 

• LibFuzzer: Detected 1 crash (heap buffer overflow) within 1 hour of fuzz testing. 

• AFL: Detected 2 issues (1 segmentation fault and 1 file size error) in the same 1-hour 

period. 

 

Efficiency 

 LibFuzzer: Detected 1 crash (heap buffer overflow) within 1 hour of fuzz testing. 
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 AFL: Detected 2 issues (1 segmentation fault and 1 file size error) in the same 1 hour 

period. 

 

Table.1 Efficiency comparison of libfuzzer and AFL 

Parameter Libfuzzer AFL  

Crashes detected  1 2 

Code coverage 75% 80% 

Execution time 30-40 mins 1 hour 

 

The efficiency comparison of libfuzzer and AFL is shown in the Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Efficiency comparison between libfuzzer and AFL. 

The crash diversity comparsion of libfuzzer and AFL is shown in the Figure 5. 
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Figure 5. Crash Diversity comparison between Libfuzzer and AFL 

Average time of crash detection is calculated as shown in eq. (1) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝐴𝑡) =  
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛( 𝑇𝑡)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠(𝑇𝑐)
  (1) 

To calculate Efficiency shown in eq. (2) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝐸)  =  
𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 (𝑇𝑒)

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛 (𝑇𝑡)
       (2) 

The fuzzing output of libfuzzer is shown in the Figure 6. 

Figure 6. Output of libfuzzer 
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Figure 7a. Output of AFL 

The Figure 7a shows the AFL fuzzing tool’s output for a session on afl_bitmap. It reports 

6.3 million executions with no unique crashes or new paths detected, and a high stability of 100%. 

The current stage, “havoc,” completed 67.19% of tasks with an execution speed of 2188/sec. The 

user without any findings manually terminated the session. The output with crashes of AFL is 

shown in Figure 7b. The crashes  

Figure 7b. The output of AFL with no crashes 
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Figure 8a. The output of AFL with sample bmp files 

Figure 8b. Output of basic commands from the proposed terminal. 
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Figure 9. Output of libfuzzer from the proposed terminal 

 

7. Conclusion and Future Enhancement  

The proposed research finds LibFuzzer is more efficient in identifying complex 

vulnerabilities, such as heap buffer overflows, due to its targeted and coverage-guided fuzzing 

approach. However, AFL excels in crash diversity, detecting a wider range of issues like 

segmentation faults and file size errors. While LibFuzzer is precise in finding deep vulnerabilities, 

AFL shines when it comes to discovering various types of crashes. This devised work can be 

enhanced by combining the strengths of both tools, leveraging LibFuzzer's depth with AFL's 

crash diversity. Additionally, expanding fuzzing to more complex file formats and incorporating 

automated analysis could improve vulnerability detection. Optimizing fuzzing for large codebases 

is also a vital area for improvement. 
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