
 

Int. J. Comput. Commun. Inf. , 11-29 / 11 

D
O

I:
  
 

R
E

S
E

A
R

C
H

 A
R

T
IC

L
E

 

D
O

I:
 1

0
.3

4
2

5
6

/
ij

cc
i2

5
1

2
 

Comparative Analysis on Different Deepfake Detection 

Techniques 

Ashutosh Sharma 
a, *

, Aryan Dutt 
a

, Arpit Rastogi 
a

, Avinash Ratre
 a 

a

 Department of Electronics & Communication Engineering, Delhi Technological University, India 

* Corresponding Author: ashutoshsharma_ec20b12_32@dtu.ac.in 

Received: 17-12-2024, Revised: 22-03-2025, Accepted: 31-03-2025, Published: 08-04-2025 

 

Abstract: Advancements in deep learning have led to the emergence of highly realistic AI-

generated videos known as deepfakes. These videos utilize generative models to expertly modify 

facial features, creating convincingly altered identities or expressions. Despite their complexity, 

deepfakes pose significant threats by potentially misleading or manipulating individuals, which 

can undermine trust and have repercussions on legal, political, and social frameworks. To 

address these challenges, researchers are actively developing strategies to detect deepfake 

content, essential for safeguarding privacy and combating the spread of manipulated media. This 

article explores current methods for generating deepfake images and videos, with a focus on 

facial features and expression alterations. It also provides an overview of publicly available 

deepfake datasets, crucial for developing and evaluating detection systems. Additionally, the 

research examines the challenges associated with identifying deepfake face swaps and expression 

changes, while proposing future research directions to overcome these hurdles. By offering 

guidance to researchers, the document aims to foster the development of robust solutions for 

deepfake detection, contributing to the preservation of the integrity and reliability of visual media. 
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1. Introduction 

Lately, there has been rapid progress in the domain of Artificial Intelligence, particularly 

in deep learning. This advancement has empowered deep learning algorithms to handle vast 

datasets more effectively, propelling significant advancements in areas such as computer vision, 

NLP, and speech recognition. Despite these strides, deep learning is still in its early phases, 

prompting researchers to continuously refine its accuracy and efficiency. Concurrently, the 

proliferation of deepfake images, artificially created visuals using machine learning algorithms 

capable of altering the appearance and actions of individuals in videos and images—has become 

increasingly widespread. This surge has sparked considerable uncertainty surrounding the 

authenticity and trustworthiness of digital media, especially within political, journalistic, an 
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entertainment contexts. Identifying deepfakes is crucial to counter ongoing issues. Therefore, 

we'll explore a novel deep learning approach that distinguishes artificially generated hoax videos 

(deepfake videos) from authentic ones. Establishing a method to detect deepfakes is a significant 

challenge aimed at recognizing and curbing their dissemination online. To recognize a deepfake, 

understanding how the Generative Adversarial Network (GAN) creates it is essential. GAN takes 

an image ("target") and a video of a specific individual as input, generating another video ("source") 

that swaps the target person’s face with a different face. The foundation of a deepfake involves a 

sophisticated adversarial neural network trained on facial images and target footage to seamlessly 

match the source face to the intended target. With appropriate post-processing, the resulting 

video can achieve a high level of authenticity. The GAN dissects the video into individual frames, 

substituting the initial image within each frame while also replicating the video. Typically, this 

process involves an autoencoder. Explore innovative deep learning approaches to accurately 

differentiate between deepfake (DF) videos and authentic ones. The complex process employed 

by GAN to generate a deepfake. The architecture is depicted in Figure 1. 

 

 

The quest to detect these sophisticated manipulations in digital content is propelled by 

the pressing need to safeguard the integrity and credibility of media. Current detection systems, 

though valuable, fall short in their ability to discern intricate alterations, especially in audio and 

facial domains. This inadequacy highlights the urgency for more robust and comprehensive 

methodologies that can effectively scrutinize various modalities of content to root out falsified 

elements. We will compile a dataset containing both authentic and deepfake videos for a 

thorough examination of cutting-edge deepfake detection models. Our dataset will include voice-

swapped, voice-cloned, and face-swapped deepfake videos to enhance their comprehensiveness 

and difficulty for detection. We will conduct a qualitative analysis by comparing the architecture, 

features, and detection techniques of chosen deepfake detection models. Additionally, we will 

quantitatively assess the performance of these models on a comprehensive dataset, using widely 

Figure 1. GAN Based Deepfake Architecture 
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recognized evaluation metrics such as accuracy, precision, recall, and F1 score. A schematic 

representation of deepfake detection system is demonstrated in Figure 2. 

In this pursuit, the ultimate goal is not just to identify and flag manipulated content but 

to devise proactive measures to preemptively thwart falsified information's spread and impact. 

By continuously refining detection systems, researchers aim to establish a robust defense 

mechanism that safeguards the authenticity and credibility of digital content in an increasingly 

sophisticated landscape of misinformation and deceit. 

 

 

2. Recent Work 

The neologism "deepfake" signifies the synthesis of manipulated videos through the 

convergence of advanced computer vision algorithms and deep learning techniques. 

Characterized by their realism, these fabricated videos primarily encompass some categories: 

face-swapping, where a target individual's facial features are seamlessly replaced with another's, 

and face reenactment, where expressions and movements are emulated onto a different 

individual's visage. 

Two primary generative approaches exist for obtaining realistic faces in videos: 

Generative Adversarial Networks (GANs) [1] and Variational AutoEncoders (VAEs) [2]. GANs 

function through a dichotomous network structure: a discriminator striving to discern reality from 

fabricated videos, and a generator adept at manipulating videos with convincing realism to outwit 

the discriminator. This framework has yielded highly authentic outcomes, prompting the 

development of diverse variations like StarGAN [3] and DiscoGAN [4]. 

Deepfake detection techniques can be broadly categorized into three groups based on 

their feature extraction methodologies which are: 

 

2.1 Visual Feature Dependence Detection 

Focuses on analyzing inconsistencies in readily observable facial features. This includes 

variations in blink patterns, head pose movements, and discrepancies in facial organ shapes [5]. 

Figure 2. General Block Diagram of Deepfake Detection 
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Initial research by Yang et al within this category explored eye blink patterns as the primary 

feature for detection, hypothesizing a difference in blink patterns between the original video and 

the manipulated deepfake [6]. Subsequent work investigated head pose inconsistencies, 

examining misalignments not only between facial features but also between the head and other 

body parts like the neck and shoulders. This approach often leverages facial landmark detection 

techniques to quantify these inconsistencies (e.g., using 68 facial landmarks to estimate head pose 

variations). 

Another category centers on Visual Artifact Detection, which aims to exploit 

imperfections arising from limitations in deepfake creation resources [7]. These imperfections, 

referred to as visual artifacts, can manifest as color inconsistencies between facial features (e.g., 

eye color differences), unnatural shadows (particularly around the nose), a lack of detailed light 

reflections, or a reduction in the geometric complexity of facial structures like teeth. Color and 

geometry extraction techniques applied to specific facial regions (eyes, nose, lips, etc.) can be 

employed to identify these visual artifacts as shown in Fig 3. As mentioned by Hady A. Khalil 

and Shady A, this approach offers initial effectiveness, its utility diminishes as deepfake 

generation techniques become more sophisticated and capable of producing increasingly realistic 

content. 

 

 

 

 

 

 

 

2.2 Seni-Local Characterstics 

It represents another prominent approach, extracting features directly from individual 

image pixels through techniques like pixel-based segmentation. This method offers advantages 

in reliability compared to analyzing readily observable visual features. Early research within this 

category combined features derived from image convolution with those obtained from 

steganalysis to pinpoint manipulated regions within facial images. These initial efforts paved the 

way for the development of more sophisticated local and deep feature-based deepfake detection 

methods. Additional feature extraction techniques employed in this domain include Pyramid of 

Histogram of Oriented Gradients (PHOG), Local Phase Quantization (LPQ), and Local Binary 

Pattern (LBP). While research suggests that methods like Image Quality Metric (IQM) can be 

effective in identifying deepfakes when compared to techniques like Linear Discriminant 

Analysis (LDA) and Principal Component Analysis (PCA), the evolving nature of deepfake 

Figure 3. General Block Diagram of Deepfake Detection 
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generation algorithms necessitates the exploration of increasingly complex features for robust 

differentiation between original and manipulated content. 

 

2.3 Deep Learning Based Frame and Temporal Features 

Shares similarities with local feature extraction but leverages deep learning architectures 

with multiple layers to extract more intricate features from individual pixels. This enables the 

capture of complex relationships within the data compared to simpler methods . Convolutional 

Neural Networks (CNNs) like DenseNet, InceptionNet, and XceptionNet have been explored 

for deepfake image detection, demonstrating promising results [5]. Rossler et al. employed 

XceptionNet to identify deepfakes within the FF++ dataset [8]. Expanding upon this concept, Li 

et al. introduced a ResNet-50 architecture with a Spatial Pyramid Pooling layer, termed DeepFD, 

achieving good performance against Generative Adversarial Network (GAN)-generated images 

[9].  

Beyond deep learning approaches, researchers have explored exploiting inherent 

differences between real and fake videos through preprocessing techniques. For instance, 

Agarwal et al. investigated "micro-expression" features, focusing on the inconsistencies in facial 

action units between different individuals. While offering robustness against compression and 

noise, this method is limited to specific individuals. 

Building upon previous efforts, recent studies have explored Vision Transformers for 

deepfake detection. Notably, this work achieves promising results by fusing a convolutional 

network, responsible for extracting facial patches from videos, with a Transformer architecture. 

This combined approach demonstrates its effectiveness in identifying manipulated content [10]. 

The state-of-the-art was further elevated by through a knowledge distillation approach. 

By extracting knowledge from a pre-trained EfficientNet B7 network fine-tuned on the DFDC 

dataset, they transferred it to a Vision Transformer model. Specifically, patch features from both 

the EfficientNet B7 and Vision Transformer were combined via global pooling and fed into the 

Transformer encoder. Additionally, a "distillation token" was injected into the Transformer 

network, facilitating the transfer of learned knowledge from the EfficientNet B7. This innovative 

approach resulted in further advancements in deepfake detection performance. 

 

2.3.1 Datasets 

In any deep learning application, it's crucial to utilize a sizable, comprehensive, and top-

notch dataset to, among other purposes, prevent overfitting. This means the application functions 

effectively beyond just the training data. 

There were several rationales behind this selection. Firstly, its accessibility in the public 

domain is noteworthy. It offers comprehensive documentation regarding both the dataset itself 

and its application. Secondly, a predominant characteristic of the extracted images is the presence 
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of a solitary, unobstructed frontal face, facilitating straightforward tracking. Thirdly, it 

encompasses videos generated through an extensive array of prevalent deepfake video 

production techniques. This implies that the eventual deepfake detection solution should be 

capable of accommodating outputs from a diverse spectrum of deepfake generation 

methodologies, rather than being tailored to a singular source. Fourthly, Datasets like Face 

Forensics++ offers a variety of video quality options for data download, catering to constraints 

related to both time and bandwidth. The presence of multiple quality levels is crucial for 

deepfake detection, as distinguishing a high-resolution deepfake from a lower-resolution 

counterfeit video is comparatively simpler. Some used datasets are 

● FaceForensics++ offers a dataset comprising 1000 original video sequences, subject to 

manipulation through four distinct automated face alteration methods: Face2Face, 

FaceSwap, NeuralTextures, and Deepfakes. The 5000 videos produced were created 

with the University of Melbourne's SPARTAN High Performance Computing System. 

Employing a 23x compression rate facilitated efficient utilization of time and storage 

resources during the downloading process for all h264 videos. The dataset encompasses 

five distinct sets of videos, delineated in Table 1, encompassing both the original videos 

and their corresponding deepfake iterations generated via Deepfakes, Face2Face, 

FaceSwap, and NeuralTextures methodologies. 

● The Google DFD dataset was generated using undisclosed deepfake generation 

technologies, potentially contributing to its omission from consideration in the majority 

of previous research endeavours. Despite certain prior studies utilizing CNN 

architecture and achieving AUC performance surpassing a specified threshold, this 

dataset's exclusion from extensive examination suggests a need for further investigation 

and scrutiny. 

● The DFDC Preview dataset, an earlier iteration and subset of the comprehensive DFDC 

dataset, has posed challenges for researchers attempting to consistently achieve high 

detection rates. During the Kaggle DFDC Challenge, participants primarily endeavored 

to devise ensembles of detection models based on deep CNN architectures within the 

confines of a 9-hour testing time limit. However, a comprehensive and systematic 

analysis of CNN models specifically tailored to the DFDC dataset was largely 

unexplored. There exists a pressing need for further research to meticulously develop 

and evaluate the effectiveness of individual models, as opposed to relying solely on 

ensemble methods. 

 

3. Convolutional Neural Networks 

Current research in the fields of computer vision, image processing, and NLP 

underscores the remarkable efficacy of Convolutional Neural Networks (CNNs) due to their 
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potent learning capabilities. These networks are characterized by their multi-stage feature 

extraction architecture, enabling them to autonomously learn data representations and effectively 

capture spatiotemporal dependencies within signals. Ongoing research efforts primarily 

concentrate on exploring novel activation and loss functions, parameter optimization techniques, 

regularization methods, and most crucially, architectural innovations for CNNs. Notably, recent 

advancements in CNN architecture have yielded significant enhancements in representational 

capacity. 

LeNet, introduced in 1989, marked the pioneering CNN architecture, employing 

backpropagation for handwritten zip code recognition [11]. Subsequent years witnessed 

significant advancements, exemplified by AlexNet, championing both classification and 

localization tasks at the 2012 Large Scale Visual Recognition Challenge. This achievement was 

credited to its deeper architecture and enhanced channel consideration. InceptionNet further 

evolved the field in 2014 by introducing multi-scale feature extraction and increasing model width 

through parallel varying kernel sizes, deviating from the solely depth-focused approach. The 

same year, VGGNet (Visual Geometry Group at University of Oxford) demonstrated the efficacy 

of extremely small (3x3) convolution filters, achieving depths of 16-19 weight layers, surpassing 

prior works. These milestones collectively illustrate the continuous progress in CNN architecture 

design. 

Addressing the vanishing gradient problem hindering deep CNNs, ResNet emerged in 

2016 [12]. Its innovative residual connections offered alternate gradient paths bypassing 

intermediate layers, enabling the training of exceptionally deep models with superior 

performance. The following year, XceptionNet [13] drew inspiration from InceptionNet, 

replacing its modules with depthwise separable convolutions. Evaluations on ImageNet 

demonstrated XceptionNet's outperformance compared to InceptionNet-V3. Continuing the 

trend, EfficientNet, proposed in 2019, focused on balancing network depth, width, and 

resolution. Notably, it introduced a compound coefficient method for uniform scaling across all 

three dimensions. 

Building upon the EfficientNet design principles, Tan and Le introduced a series of 

eight scaled architectures, termed EfficientNet B0 to B7 [14]. Evaluations on the ImageNet 

dataset revealed that EfficientNet B7 surpassed established models like InceptionNet-V4 

(80.0%), XceptionNet (79.0%), ResNet152 (77.8%), and ResNet50 (76.0%), achieving a 

remarkable top-1 accuracy of 84.3%. This feat underscores the эффективность of the balanced 

scaling approach employed in EfficientNet. Subsequently, in 2020, Sun et al. proposed HRNet, 

a novel architecture prioritizing the preservation of high-resolution representations. This design 

choice aimed to provide a more robust backbone for position-sensitive tasks in computer vision, 

including human pose estimation, object detection, and semantic segmentation. 
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4. Transformer 

The Transformer architecture (Figure 4) has emerged as a pivotal model for neural 

sequence transduction tasks, marked by its encoder-decoder structure. Originally introduced for 

natural language processing, Transformers have since widened their applicability to various 

domains, including computer vision. Unlike traditional convolutional neural networks (CNNs), 

Transformers operate on sequences of symbol representations, facilitating a more 

comprehensive understanding of input data. In the context of deepfake detection, this 

architecture proves promising due to its ability to discern intricate patterns and nuances within 

sequences of images or video frames, enabling effective discrimination between authentic and 

manipulated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The evolution of Transformer models in the field of computer vision has catalyzed 

significant advancements in deepfake detection methodologies. Vision Transformer (VIT), 

introduced in 2020, demonstrated the efficacy of applying Transformer architectures directly to 

sequences of image patches for image classification tasks. This breakthrough marked a departure 

from conventional CNN-based approaches, showcasing the Transformer's potential in visual data 

analysis. Subsequent innovations, such as the Bidirectional Encoder representation from image 

Transformers (BEiT) and the Swin Transformer, further enhanced the capabilities of 

Transformer-based models in image understanding tasks, achieving remarkable performance on 

benchmarks like ImageNet. These developments underscore the adaptability and versatility of 

Figure 4. Transformer-Architecture 
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Transformer architectures in tackling complex visual data manipulation scenarios, including 

deepfake generation and detection. 

Recent research efforts have extended the Transformer paradigm to address specific 

challenges inherent in deepfake detection. Models like Class-attention in image Transformers 

(CaiT) have been designed with specialized attention mechanisms tailored for image 

classification tasks, optimizing the processing of image patches while enhancing feature extraction 

and classification accuracy. By integrating learnable diagonal matrices and separating transformer 

layers for self-attention and class attention, CaiT demonstrates a sophisticated approach to 

guiding attention processes and extracting meaningful features from manipulated image data. 

Such advancements signify a paradigm shift in the application of Transformer architectures, 

offering new avenues for robust deepfake detection systems capable of mitigating the 

proliferation of synthetic media for malicious purposes. 

 

5. Methodology 

In this study, we outline our methodology for developing and evaluating deep learning 

models for the detection of deepfake content. Initially, we conducted a systematic partitioning of 

each of the five datasets into distinct sets for training, validation, and testing, ensuring non-

overlapping data subsets. For the DFDC dataset, which already provided predefined splits, we 

adhered to these partitions. However, for the remaining datasets, we ensured a split where 

approximately 15% of the data was allocated for validation and 15% for testing, while the 

remaining 70% was designated for training. Furthermore, we meticulously maintained the 

integrity of source videos used in deepfake creation within the same split, thereby preserving 

consistency across real and fake distributions while adhering to the specified minimum 

percentages. 

Subsequently, we conducted frame extraction from both authentic and deepfake videos, 

followed by facial detection and extraction processes to establish balanced distributions of real 

and fake instances within the training and validation datasets. The testing dataset retained its 

original video format, and during the detection phase, we extracted video frames and facial 

regions for analysis to obtain test results. The results obtained from the analyzed frames were 

averaged for each video. 

Convolutional Neural Networks (CNNs) exhibit a capability to discern spatial intricacies 

within data, rendering them well-suited for the analysis of visual media such as photographs and 

videos. Within the domain of deepfake detection, CNNs prove instrumental in scrutinizing video 

frame data to discern distinctive features distinguishing deepfake content from authentic footage. 

For instance, CNNs can adeptly identify subtle variations in skin texture or facial appearance 

indicative of deepfake manipulation. The utilization of CNNs involves processing preprocessed 

images to ascertain the authenticity of video content. This process entails training the model on 
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a dataset comprising both genuine and synthetic videos, followed by employing a CNN 

architecture to classify individual frames as fake or real. 

The algorithmic procedure encompasses the following steps: 

Model Training: The CNN model is trained utilizing a dataset comprising genuine and 

fabricated videos to facilitate learning discriminative features. 

Frame Extraction and Preprocessing: Frames are extracted from the videos and 

subjected to preprocessing techniques aimed at noise reduction and enhancing clarity. 

CNN Processing: Preprocessed frames are fed into the CNN model, which extracts 

pertinent features crucial for discerning between authentic and manipulated content. 

Feature Extraction: Utilizing a pre-trained CNN model, hidden features are extracted 

from the input frames, leveraging established architectures such as MesoNet or other suitable 

alternatives. 

Classification: Post-feature extraction, the model classifies videos based on the 

authenticity of their content, thereby discerning between genuine and falsified footage. 

This systematic approach underscores the efficacy of CNNs in discerning deepfake 

content, thereby contributing to the advancement of robust detection methodologies 

 

5.1 ResNet-50 

A convolutional neural network architecture known in Figure 5 as ResNet-50 has been 

applied in the identification of deepfake videos. Initially, it utilizes multiple convolutional layers 

to learn and extract features from input images, followed by fully connected layers for 

classification purposes. ResNet-50 is adept at analyzing video frames and discerning 

characteristics that distinguish deepfake content from authentic ones within the realm of 

deepfake video detection. To develop a broad understanding of features, the network is typically 

pre-trained on extensive datasets comprising genuine images. These generalized features are 

further refined through fine-tuning on a smaller dataset that includes both authentic and deepfake 

videos, specifically tailored for deepfake identification tasks. One of the principal advantages of 

ResNet-50 lies in its capability to grasp features at diverse scales, facilitating the capture of 

nuanced details within the data, which is crucial for accurate deepfake identification given the 

subtle discrepancies between genuine and fake videos. The utilization of ResNet-50 for deepfake 

detection generally involves several steps: (i) assembling a dataset consisting of both genuine and 

fraudulent videos along with appropriate labelling, (ii) preprocessing the data by extracting frames 

from the videos and normalizing pixel values, (iii) by processing each video frame through the 

ResNet-50 model, features are extracted, resulting in a high-dimensional feature vector that 

captures the fundamental elements of the input frame, (iv) aggregating temporal information by 

combining feature vectors of all frames using techniques like max or average pooling to create a 
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fixed-length representation of the video, (v) employing a classifier to ascertain the authenticity of 

the fixed-length video representation through processing, and (vi) training the model involves 

utilizing labeled data for backpropagation and gradient descent, followed by evaluation on a 

separate test dataset using metrics such as accuracy, precision, and recall. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Illustrates the network structure of ResNet-50 

 

5.2 Meso-Net 4 

Our experimentation commenced with intricate architectures, progressively simplifying 

them until arriving at a streamlined model that delivers equivalent outcomes with enhanced 

efficiency. The devised network initiates with a series of 4 layers pooling operations and 

successive convolutions, succeeded by a dense network featuring a solitary layer which is hidden. 

To bolster generalization capabilities, ReLU activation functions are applied within the 

convolutional layers to introduce non-linearities, while Batch Normalization techniques are 

employed to regularize their outputs and mitigate the vanishing gradient phenomenon. 

Additionally, Dropout mechanisms[15] are incorporated within the fully connected layers to 

bolster regularization efforts and fortify their resilience against overfitting. 

 

5.2.1 Mesoinception-4 

A viable modification involves substituting the initial pair of convolutional layers within 

Meso4 with a variation of the inception module pioneered by Szegedy et al [16]. The core 

concept of this module entails amalgamating the outputs of multiple convolutional layers 



Vol. 7 Iss. 1 Year 2025 Ashutosh Sharma et al., / 2025 

Int. J. Comput. Commun. Inf., 11-29 / 22 

featuring diverse kernel shapes, thereby expanding the functional space within which the model 

operates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Departing from the original module's utilization of 5 × 5 convolutions, we advocate for 

the adoption of 3 × 3 dilated convolutions to circumvent excessive semantic impact. While the 

notion of employing dilated convolutions within the inception module has been explored in prior 

works as a strategy to address multi-scale information, we augment this approach by integrating 

1×1 convolutions preceding the dilated convolutions for dimensionality reduction. Additionally, 

an extra 1×1 convolution is introduced in parallel to serve as a skip-connection linking successive 

modules. Detailed schematics elucidating these modifications are depicted in Figure 7. 

Replacing more than two layers with inception modules did not yield superior 

classification results. The parameters (ai, bi, ci, di) chosen for each layer are as follows: a value 

of 1 for layers 1 and 2, a value of 4 for b in layers 1 and 2, a value of 4 for c in layers 1 and 2, 

and a value of 1 for d in layer 1 and 2 in layer 2. These hyperparameters resulted in a total of 

28,615 trainable parameters for the network. 

 

5.3 Xception-Net 

Xception leverages a novel deep convolutional neural network architecture centred on 

Depthwise Separable Convolutions (DSCs). Introduced by researchers at Google, this design 

incorporates inception modules that bridge the gap between standard convolutions and their 

depthwise separable counterparts. This innovative approach builds upon the foundation laid by 

Figure 6. The image illustrates the layered network architecture of Meso-4, showing 

the layers, parameters, and output sizes through boxes and annotated arrows. 
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Inception modules, ultimately leading to the development of Xception – an architecture aptly 

named for its emphasis on "Extreme Inception." 

 

 

 

 

 

 

 

 

 

 

 

 

As illustrated in Figure 8, the Xception architecture employs a total of 36 convolutional 

layers meticulously organized into 14 distinct modules. These modules collaboratively perform 

feature extraction throughout the network. Notably, all layers except for the initial and final ones 

(as depicted in Figure 9) incorporate linear residual connections that circumvent the modules. 

It's important to acknowledge that the Xception network is designed to handle input images with 

dimensions varying between 71 x 71 and 299 x 299 pixels. 

As detailed in Figure 9, depthwise separable convolution constitutes a two-step process 

encompassing a depthwise convolution followed by a pointwise convolution. During depth wise 

convolution, a separate spatial convolution is applied to each input channel. Subsequently, the 

outputs from these individual convolutions are combined through a pointwise convolution. This 

approach enables depthwise separable convolution layers to extract richer feature 

representations while simultaneously incurring lower computational costs and requiring a 

reduced number of parameters. Remarkably, this technique achieves comparable or even 

superior performance and scalability. As highlighted in [6], combining multiple, simpler 

convolutions into a block fosters the overall depth of the neural network, ultimately facilitating 

the extraction of more intricate and nuanced features. 

Figure 7. Structure of the inception modules utilized in MesoInception-4 
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5.4 ViT 

The proposed shallow Vision Transformer for deepfake detection introduces a 

transformer-based network optimized to perform efficiently within constrained computational 

and memory resources. By streamlining the model architecture to include only 12 transformer 

layers and 6 heads, we significantly reduce the number of parameters to 5,217,642, 

approximately 16.48 times less than conventional ViT variants. This reduction in complexity 

allows the model to achieve optimal performance while requiring fewer training images to learn 

its parameters. Furthermore, our approach leverages the attention mechanism to emphasize 

crucial regions within input images, enabling accurate discrimination between real and fake 

content. This targeted attention to specific image patches is vital, as differences between authentic 

and manipulated images often manifest in localized areas. Therefore, by analyzing the 

distribution of the attention vector in the shallow ViT, we can effectively identify and prioritize 

significant image features for deepfake detection. 

Figure 8. Xception net Architecture [7] 

Figure 9. Depthwise separable convolution Architecture [8]. 
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6. Results 

In our study, along with the CNN and Transformer models, we introduced another 

model called Cross-ViT, which is a separate architecture in its own right. Initially, we segmented 

each of the five datasets into distinct portions for training, validation, and testing purposes. While 

the DFDC dataset already had predefined divisions, we partitioned the videos into other datasets 

to allocate roughly 15% for validation, 15% for testing, and the remaining data for training. This 

ensured a balanced distribution while maintaining consistency by keeping specific source videos 

used in deepfake creation within the same segment. Subsequently, we conducted frame 

extraction and facial detection to create balanced datasets. The testing dataset retained its original 

video format, and during detection, we extracted frames and facial regions to analyze the results. 

For model construction, we utilised ResNet152, MesoNet-4, MesoInception-4, and 

Xception as CNN architectures, alongside ViT as the Transformer architecture, and Cross-ViT 

which is a convolution of CNN and Transformer architecture. Each model underwent the same 

training process and was evaluated based on the highest validation accuracy. Finally, cross-dataset 

evaluation tests were conducted, with results summarized in Table 1 and Table 2. To optimize 

the model's performance, the cross-entropy loss function was employed. This function effectively 

measures the disparity between the predicted probability distribution and the actual distribution. 

Additionally, the Stochastic Gradient Descent (SGD) solver was utilized for optimization, 

facilitating the iterative refinement of model parameters to minimize the chosen loss function. 

 

Figure 10. Architecture ViT model for deepfake detection 
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Table 1. Accuracies of different models 

Train Data Architect ure Test Data (Balanced Accuracy Results in 

%) 

FF+ 

2020 

Google DFD DFDC 

FF+ 2020 ResNet 88.01 58.01 55.00 

MesoNet- 4 93.53 76.0 63.77 

MesoInce ption-4 95.94 78.3 68.41 

Xception 87.32 67.11 52.81 

VIT 79.66 50.88 68.11 

Cross-Vit (Conv) 73.33 69.69 78.55 

 

Google DFD 

ResNet 52.80 96.01 65.34 

MesoNet- 4 64.3 98.54 78.93 

MesoInce ption-4 65.8 99.33 80.22 

Xception 43.31 93.84 72.24 

VIT 58.80 86.72 66.10 

Cross-Vit (Conv) 63.35 88.57 74.21 

 

 

 

 

 

DFDC 

ResNet 52.10 91.0 78.21 

MesoNet- 4 60.42 93.71 89.33 

MesoInce ption-4 64.81 94.88 91.55 

Xception 58.94 87.31 89.01. 

VIT 57.21 82.66 90.03 

Cross-Vit (Conv) 61.11 90.67 79.05 

 

Table 2. AUC scores of different models 

Train Data Architec ture Test Data (AUC Results in %) 

FF+ 2020 Google DFD DFDC 

FF+ 2020 ResNet 93.26 87.61 68.44 

MesoNe t-4 78.12 60.52 58.44 

MesoInc eption-4 82.00 66.44 64.33 

Xception 99.65 91.18 65.07 

VIT 92.3 84.86 76.34 

Cross-Vi t(Conv) 63.32 55.00 40.12 

Google DFD ResNet 60.52 90.23 70.00 

MesoNe t-4 58.03 94.14 68.32 

MesoInc eption-4 60.01 97.21 68.55 
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Xception 57.43 99.89 78.54 

VIT 62.63 98.07 72.59 

Cross-Vi t(Conv) 42.31 88.01 44.31 

DFDC ResNet 73.37 46.94 94.83 

MesoNe t-4 76.41 50.08 96.44 

MesoInc eption-4 77.22 56.44 97.21 

Xception 71.16 75.71 95.98 

VIT 69.40 62.53 95.97 

Cross-Vi t(Conv) 56.32 51.10 91.13 

 

6.1 Optimal Detection Outcomes 

We noticed that the top accuracies attained in identifying deepfakes from FF++ 2020, 

Google DFD, and DFDC test datasets were 95.94%, 99.33%, and 91.55%, respectively. Similarly, 

the highest AUC scores reached for detecting deepfakes from FF++ 2020, Google DFD, and 

DFDC test datasets were 99.65%, 99.89%, and 97.21%, respectively. 

 

6.2 Equivalent Training and Testing Datasets 

Both CNNs and Transformer models demonstrated commendable performance, with 

accuracies exceeding 85% and AUC surpassing 98% when tested on FF++ 2020 and Google 

DFD datasets. However, VIT exhibited comparatively lower performance, with accuracies 

ranging from around 50.88% to 84.86% and AUC from around 58.11% to 76.34%. Performance 

declined as the models were tested on larger and newer datasets. CNNs generally matched or 

outperformed Transformer models, with ResNet, MesoNet-4, Xception, and VIT showing 

notable detection capabilities on their respective test datasets. 

 

6.3 Assessments across Different Datasets 

Models trained using the FF++ 2020 dataset demonstrated effectiveness when applied 

to the DFDC test dataset. Specifically, the Xception, VIT, and CrossVit (Conv) models trained 

on FF++ 2020 achieved accuracies of 52.81%, 68.11%, and 78.55%, respectively, when tested on 

the DFDC dataset. Additionally, their respective AUC scores on the DFDC dataset were 65.07%, 

76.34%, and 40.12%. 

 

7. Conclusion 

In our research, we explored the capabilities of various deep learning models in detecting 

deepfakes across different publicly available datasets. We evaluated the performance of four 

convolutional neural networks (CNNs) and four transformer models on the same train-to-test 
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and cross-dataset scenarios. Through comprehensive cross-dataset evaluations and overall model 

performance analysis, we uncovered the relationships between the FF++ 2020, Google DFD, 

and Celeb-DF datasets. Additionally, we identified the unique strengths and characteristics of the 

Deeper Forensics, DFDC, and FF++ 2020 datasets. Our findings suggest that these datasets will 

continue to play a crucial role in future research, especially as new and more advanced deepfake 

techniques emerge, necessitating further investigations. 
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