Utilizing Chlorophyll as a Natural Chelating Agent for the Remediation of Heavy Metal Pollution: A Density Functional Theory Study

  • Pitchumani Violet Mary C Department of Physics, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641 062, India
  • Shalini Packiam Kamala S Michael Job College of Arts and Science for Women, Coimbatore 641 046, India
Keywords: Heavy metal pollution, Chlorophyll, Eco-friendly remediation, Waste management, Density Functional Theory (DFT), Metal-chlorophyll complexes

Abstract

Heavy metal pollution, driven by industrialization, urbanization, and inadequate waste management, poses significant environmental and health risks. Toxic elements such as lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As) persist in ecosystems and bioaccumulate within biological systems, leading to severe health effects. Major contamination sources include industrial processes, agricultural practices, and improper waste disposal. Unlike organic pollutants, heavy metals do not degrade over time, allowing long-distance transport and deposition in soils and sediments. Traditional remediation methods often generate secondary waste, while adsorption techniques face material regeneration challenges. Natural chelating agents like chlorophyll, integral to photosynthesis, offer a promising alternative due to their ability to form stable complexes with heavy metals, reducing their bioavailability and toxicity. This study explores chlorophyll's potential in sequestering heavy metals through Density Functional Theory (DFT) to analyze the electronic structure and bonding characteristics of metal-chlorophyll complexes, aiming to develop sustainable and eco-friendly remediation strategies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair, M. Sadeghi, Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic, Frontiers in Pharmacology, 12, (2021) 643972. https://doi.org/10.3389/fphar.2021.643972

A.S. Prasad, Zinc in human health: Effect of zinc on immune cells. Molecular Medicine, 14, (2008) 353-357. https://doi.org/10.2119/2008-00033.Prasad

M.C. Linder, (1991) Biochemistry of Copper, Plasma Protein Turnover 120, 125-131. https://doi.org/10.1007/978-1-4757-9432-8

A.T. Jan, M. Azam, K. Siddiqui, A. Ali, I. Choi, Q.M. Haq, Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. International Journal of Molecular Sciences, 16(12), (2015) 29592-29630. https://doi.org/10.3390/ijms161226183

J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon 6, (2020) e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

G.A. Engwa, P.U. Ferdinand, F. N. Nwalo, M.N. Unachukwu, (2019) Mechanism and Health Effects of Heavy Metal Toxicity in Humans. IntechOpen. https://doi.org/10.5772/intechopen.82511

L. Patrick, Lead toxicity, a review of the literature. Part I: Exposure, evaluation, and treatment. Alternative Medicine Review, 11(1), (2006) 2-22.

T.W. Clarkson, L. Magos, G. J. Myers, The toxicology of mercury - Current exposures and clinical manifestations. New England Journal of Medicine, 349, (2003) 1731-1737. https://doi.org/10.1056/NEJMra022471

S. Satarug, S.H. Garrett, M.A. Sens, D.A. Sens, Cadmium, environmental exposure, and health outcomes, Environmental Health Perspectives, 118, (2010) 182-190. https://doi.org/10.1289/ehp.0901234

M.F. Hughes, B.D. Beck, Y. Chen, A.S. Lewis, Arsenic exposure and toxicology: A historical perspective, Toxicological Sciences, 123(2), (2011) 305-332. https://doi.org/10.1093/toxsci/kfr184

B. J. Alloway, (Ed.), (2013). Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. 4th ed. Springer. https://doi.org/10.1007/978-94-007-4470-7

G. Sposito, (2008) The Chemistry of Soils. 2nd ed. Oxford University Press.

N.A.A. Qasem, R.H. Mohammed, D.U. Lawal, Removal of heavy metal ions from wastewater: a comprehensive and critical review, npj Clean Water, 4, 36 (2021). https://doi.org/10.1038/s41545-021-00127-0

X. Shen, M. Dai, J. Yang, L. Sun, X. Tan, C. Peng, I. Ali, I. Naz, A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere, 291(3), (2022) 132979. https://doi.org/10.1016/j.chemosphere.2021.132979

M. Knapp, J. Bridwell-Rabb, The green pigment of life, Nature Chemistry, 14, (2022) 1202. https://doi.org/10.1038/s41557-022-01052-6

K. Zhdanova, M. Ivantsova, M. Vyal’ba, K. Usachev, S. Gradova, S. Градов, S. Karpechenko, N. Bragina, Design of A3B-Porphyrin conjugates with terpyridine as potential theranostic agents: Synthesis, complexation with Fe(III), Gd(III), and photodynamic activity. Pharmaceutics, 15(1), (2023), 269-269. https://doi.org/10.3390/pharmaceutics15010269

F. Schmitt, P. Govindaswamy, G. Süß-Fink, W. H. Ang, P. J. Dyson, L. Juillerat-Jeanneret, B. Therrien, Ruthenium porphyrin compounds for photodynamic therapy of cancer. Journal of Medicinal Chemistry, 51(6), (2008), 1811-1816. https://doi.org/10.1021/jm701382p

H. Huang, W. Song, J. Rieffel, J.F. Lovell, Emerging Applications of Porphyrins in Photomedicine. Frontiers in Physics, 3, (2015). https://doi.org/10.3389/fphy.2015.00023

A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, Journal of Chemical Physics, 98 (1993) 5648-5652. https://doi.org/10.1063/1.464913

C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37, (1988) 785-789. https://doi.org/10.1103/PhysRevB.37.785

P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, Journal of Chemical Physics, 82, (1985) 270-283. https://doi.org/10.1063/1.448799

P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, Journal of Chemical Physics, 82 (1985) 299-310. https://doi.org/10.1063/1.44879

P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, Journal of Chemical Physics, 82 (1985), 284-298. https://doi.org/10.1063/1.448800

S.F. Boys, F. de Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Molecular Physics, 19 (1970), 553-566. https://doi.org/10.1080/00268977000101561

R. Shankar, P. Kolandaivel, L. Senthilkumar, Interaction studies of cysteine with Li+, Na+, K+, Be2+, Mg2+, and Ca2+ metal cation complexes, Journal of Physical Organic Chemistry, 24 (2011), 553-567. https://doi.org/10.1002/poc.1786

C. Pitchumani Violet Mary, S. Vijayakumar, R. Shankar, Metal chelating ability and antioxidant properties of Curcumin-metal complexes - A DFT approach, Journal of Molecular Graphics and Modelling, 79, (2018) 1-14. https://doi.org/10.1016/j.jmgm.2017.10.022

C. Pitchumani Violet Mary, R. Shankar, S. Vijayakumar, P. Kolandaivel, Interaction studies of human prion protein (HuPrP109-111: methionine-lysine-histidine) tripeptide model with transition metal cations, Journal of Molecular Graphics and Modelling, 69, (2016) 111-126. https://doi.org/10.1016/j.jmgm.2016.08.012

A.E. Reed, R.B. Weinstock, F. Weinhold, Natural population analysis, Journal of Chemical Physics, 83, (1985) 735-746. https://doi.org/10.1063/1.449486

E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, (1990) NBO 3.0 Program Manual. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI.

R.F.W. Bader, (1990) Atoms in Molecules, A Quantum Theory, Oxford Science Publications, Clarendon Press, London. https://doi.org/10.1093/oso/9780198551683.001.0001

T. Lu, F. Chen, Multiwfn : A Multifunctional Wavefunction Analyzer, Journal of Computational Chemistry, 33, (2012) 580-592. https://doi.org/10.1002/jcc.22885

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, (2010)Gaussian 09 Revision B.01.Gaussian, Inc., Wallingford CT.

Published
2024-05-15
How to Cite
C, P. V. M., & S, S. P. K. (2024). Utilizing Chlorophyll as a Natural Chelating Agent for the Remediation of Heavy Metal Pollution: A Density Functional Theory Study. Frontiers in Advanced Materials Research, 6(1), 51-64. https://doi.org/10.34256/famr2415
Section
Articles



Views: Abstract : 17 | PDF : 7

Plum Analytics