Possibility of formation of stationary structures in relativistically degenerate magnetized quantum plasma with exchange-correlation energy
Abstract
In the present paper we have studied the possibility of stationary structure formation in ion acoustic wave in a relaivistically degenerate quantum plasma in presence of magnetic field quantum diffraction parameter and localized exchange correlation energy. Recent authors include exchange correlation term in many plasma configurations including quantum and relativistic regime. We have analyzed the applicability of certain mathematical tools like the Sagdeev pseudo-potential method in dealing with the analysis of the formation and properties of large amplitude solitary structures, double layers, shocks etc. The findings of this paper will help future researchers to select analytical methods while studying wave phenomena in plasma .
Downloads
Metrics
References
D. Bohm, B. J. Hiley, (2006) The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, https://doi.org/10.4324/9780203980385
D. Bohm, D. Pines, A collective description of electron interactions: III. coulomb interactions in a degenerate electron gas, Physical Review, 92, (1953) 609-625. https://doi.org/10.1103/PhysRev.92.609
D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. I, Physical Review, 85(1952) 166-179. https://doi.org/10.1103/PhysRev.85.166
D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. II, Physical Review, 85(1952) 180-193. https://doi.org/10.1103/PhysRev.85.180
D. Bohm, B. Hiley, On the intuitive understanding of nonlocality as implied by a quantum theory, Foundations of Physics, 5, (1975) 93-109. https://doi.org/10.1007/BF01100319
E. Madelung. Quantentheorie in hydrodynamischer form. Zeitschrift für Physik A Hadrons and Nuclei, 40(3), (1927) 322-326. https://doi.org/10.1007/BF01400372
MA. Leontovich, (1966) Reviews of plasma physics, Springer New York, NY. https://doi.org/10.1007/978-1-4615-7799-7
T. Sjostrom, J. Daligault. Gradient corrections to the exchange-correlation free energy. Physical Review B, 90(2014), 155109. https://doi.org/10.1103/PhysRevB.90.155109
M. Corradini, R. Del Sole, G. Onida, and M. Palummo. Analytical expressions for the local-field factor g(q) and the exchange-correlation kernel K_xc (r) of the homogeneous electron gas, Physical Review B, 57(1998) 14569-14571. https://doi.org/10.1103/PhysRevB.57.14569
S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W. M. C. Foulkes, M. Bonitz, Ab initio exchange-correlation free energy of the uniform electron gas at warm dense matter conditions, Physical Review Letters, 119(2017) 135001. https://doi.org/10.1103/PhysRevLett.119.135001
L. Brey, Jed Dempsey, N.F. Johnson, B.I. Halperin, Infrared optical absorption in imperfect parabolic quantum wells, Physical Review B, 42(1990) 1240. https://doi.org/10.1103/PhysRevB.42.1240
G. Chabrier, F Douchin, A.Y. Potekhin, Dense astrophysical plasmas, Journal of Physics: Condensed Matter, 14(40), (2002) 9133. https://doi.org/10.1088/0953-8984/14/40/307
S. Ichimaru, Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids, Reviews of Modern Physics, 54(4), (1982) 1017. https://doi.org/10.1103/RevModPhys.54.1017
S. Singla, S. Chandra, N.S. Saini, Simulation study of dust magnetosonic excitations in a magnetized dusty plasma, Chinese Journal of Physics, 85 (2023) 524-533. https://doi.org/10.1016/j.cjph.2023.06.014
A. Roychowdhury, S. Banerjee, S. Chandra, Stationary formation of dust-ion acoustic waves in degenerate dusty plasma at critical regime, African Review of Physics, 15(2021) 102.
S. Ballav, S. Kundu, A. Das, S. Chandra, Non-linear behaviour of dust acoustic wave mode in a dynamic dusty plasma containing negative dust particles and positrons, African Review of Physics, 15(2021) 54.
S. Chandrasekhar, (1957) An Introduction to the Study of Stellar Structure, Dover Publications, United Kingdom.
J. Goswami, S. Chandra, J. Sarkar, B. Ghosh, Amplitude modulated electron acoustic waves with bipolar ions and kappa distributed positrons and warm electrons, Pramana-Journal of Physics, 95, (2021) 54. https://doi.org/10.1007/s12043-021-02085-1
C. Das, S. Chandra, B. Ghosh, Effects of exchange symmetry and quantum diffraction on amplitude modulated electrostatic waves in quantum magnetoplasma, Pramana-Journal of Physics, 95 (2020) 78. https://doi.org/10.1007/s12043-021-02108-x
H. Sahoo, C. Das, S. Chandra, B. Ghosh, and K. K. Mondal, Quantum and relativistic effects on the kdv and envelope solitons in ion-plasma waves, IEEE Transactions on Plasma Science, 50(6), (2022) 1610-1623. https://doi.org/10.1109/TPS.2021.3120077
A. Das, P. Ghosh, S. Chandra, V. Raj, Electron acoustic peregrine breathers in a quantum plasma with 1-d temperature anisotropy, IEEE Transactions on Plasma Science, 50(6), (2022)1598-1609. https://doi.org/10.1109/TPS.2021.3113727
S. Chandra, C. Das, J. Sarkar, Evolution of nonlinear stationary formations in a quantum plasma at finite temperature, Zeitschrift fur¨ Naturforschung A, 2021. https://doi.org/10.1515/zna-2020-0328
S. Shilpi, C. Das, S. Chandra, Study of quantum-electron acoustic solitary structures in fermi plasma with two temperature electrons, Springer Proceedings in Complexity, (2022). https://doi.org/10.1007/978-3-030-99792-2_6
C. Das, S. Chandra, S. Kapoor, and P. Chatterjee, Semi-lagrangian method to study nonlinear electrostatic waves in quantum plasma, IEEE Transactions on Plasma Science, 50(6), (2022) 1579-1584. https://doi.org/10.1109/TPS.2022.3158965
C. Das, S. Chandra, B. Ghosh, Amplitude modulation and soliton formation of an intense laser beam interacting with dense quantum plasma: Symbolic simulation analysis, Contributions to Plasma Physics, 6(8), (2020). https://doi.org/10.1002/ctpp.202000028
A. Maiti, S. Chowdhury, P. Singha, S. Ray, R. Dasgupta, S. Chandra, Study of small amplitude ion-acoustic bunched solitary waves in a plasma with streaming ions and thermal electrons, African Review of Physics, 15, (2021) 97.
T. Ghosh, S. Pramanick, S. Sarkar, A. Dey, S. Chandra, Chaotic scenario in three-component fermi plasma, The African Review of Physics, 15, (2021) 45.
C. Das, S. Chandra, B. Ghosh, Nonlinear interaction of intense laser beam with dense plasma, Plasma Physics and Controlled Fusion, 63(1), (2020). https://doi.org/10.1088/1361-6587/abc732
S. Dey, D. Maity, A. Ghosh, P. Samanta, A. De, S. Chandra, Chaotic excitations of rogue waves in stable parametric region for highly-energetic pair plasmas, The African Review of Physics, 15, (2021) 33.
M. Ghosh, K. Sharry, D. Dutta, S. Chandra, Propagation of rogue waves and cnoidal waves formations through low frequency plasma oscillations, The African Review of Physics, 15, (2021) 63.
A.K. Singh, S. Chandra, Second harmonic generation in high density plasma, The African Review of Physics, 12, (2017) 84-89.
P. Samanta, A. De, S. Dey, D. Maity, A. Ghosh, S. Chandra, Nonlinear excitations in dust-ion acoustic waves and the formation of rogue waves in stable parametric region in a 3-component degenerate plasma, The African Review of Physics, 15, (2021) 10.
S. Chandra, J. Sarkar, C. Das, B. Ghosh, Self-interacting stationary formations in plasmas under externally controlled fields, Plasma Physics Reports, 47, (2021) 306-317. https://doi.org/10.1134/S1063780X21030041
A. Mukhopadhyay, D. Bagui, S. Chandra, Electrostatic shock fronts in two-component plasma and its evolution into rogue wave type solitary structures, The African Review of Physics, 15 (2021), 25.
A. Ghosh, J. Goswami, S. Chandra, C. Das, Y. Arya, and H. Chhibber, Resonant interactions and chaotic excitation in nonlinear surface waves in dense plasma, IEEE Transactions on Plasma Science, 50(6), (2022) 1524-1535. https://doi.org/10.1109/TPS.2021.3109297
S. Ballav, A. Das, S. Pramanick, S. Chandra, Plasma shock wave in gamma-ray bursts: Nonlinear phenomena and radiative process, IEEE Transactions on Plasma Science, 50(6), (2022) 1488-1494. https://doi.org/10.1109/TPS.2021.3112178
J. Sarkar, S. Chandra, A. Dey, C. Das, A. Marick, P. Chatterjee, Forced kdv and envelope soliton in magnetoplasma with kappa distributed ions, IEEE Transactions on Plasma Science, 50(6), (2022) 1565-1578,. https://doi.org/10.1109/TPS.2022.3140318
S. Sarkar, A. Sett, S. Pramanick, T. Ghosh, C. Das, and S. Chandra, Homotopy study of spherical ion-acoustic waves in relativistic degenerate galactic plasma, IEEE Transactions on Plasma Science, 50(6), (2022) 1477-1487. https://doi.org/10.1109/TPS.2022.3146441
Sharry, D. Dutta, M. Ghosh, and S. Chandra, Magnetosonic shocks and solitons in fermi plasma with quasiperiodic perturbation, IEEE Transactions on Plasma Science, 50(6), (2022) 1585-1597. https://doi.org/10.1109/TPS.2022.3148183
A. Majumdar, A. Sen, B. Panda, R. GHOSH, S. Mallick, S. Chandra, Study of shock fronts and solitary profile in a weakly relativistic plasma and its evolution into an amplitude modulated envelop soliton, The African Review of Physics, 15(18), (2021).
S. Thakur, C. Das, S. Chandra, Stationary structures in a four component dense magnetoplasma with lateral perturbations, IEEE Transactions on Plasma Science, vol. 50(6), (2022) 1545-1556. https://doi.org/10.1109/TPS.2021.3133082
S. Chandra, J. Goswami, J. Sarkar, C. Das, B. Ghosh, D. Nandi, Formation of electron acoustic shock wave in inner magnetospheric plasma, Indian Journal of Physics, 2021. https://doi.org/10.1007/s12648-021-02276-x
A. Dey, S. Chandra, C. Das, S. Mandal, T. Das, Rogue wave generation through non-linear self interaction of electrostatic waves in dense plasma, IEEE Transactions on Plasma Science, vol. 50, no. 6, pp. 1557-1564, 2022.
S. Chandra, R. Banerjee, J. Sarkar, S. Zaman, C. Das, S. Samanta, F. Deeba, B. Dasgupta, Multistability studies on electron-acoustic wave in a magnetized plasma with supra-thermal ions, Journal of Astrophysics and Astronomy, vol. 43, no. 71, 2022. https://doi.org/10.1007/s12036-022-09835-6
S. Chandra, S. Kapoor, D. Nandi, C. Das, and D. Bhattacharjee, Bifurcation analysis of eaws in degenerate astrophysical plasma: Chaos and multistability, IEEE Transactions on Plasma Science, vol. 50, no. 6, pp. 1495-1507, 2022. https://doi.org/10.1109/TPS.2022.3166694
G. Manna, S. Dey, J. Goswami, S. Chandra, J. Sarkar, A. Gupta, Formation of nonlinear stationary structures in ionospheric plasma, IEEE Transactions on Plasma Science, vol. 50(6), (2022) 1464-1476,. https://doi.org/10.1109/TPS.2022.3166685
S. Dey, S. Ghosh, D. Maity, A. De, S. Chandra, Two-stream plasma instability as a potential mechanism for particle escape from the venusian ionosphere, Pramana-Journal of Physics, 2022. https://doi.org/10.1007/s12043-022-02462-4
M. Chatterjee, M. Dasgupta, P. DAS, M. Halder, S. Chandra, "Study of dynamical properties in shock & solitary structures and its evolutionary stages in a degenerate plasma," The African Review of Physics, 15, (2021) 75.
S. Ghosh, S. Saha, T. Chakraborty, K. Sadhukhan, R. Bhanja, S. Chandra, "Linear and non-linear properties of electron acoustic waves in a viscous plasma," The African Review of Physics, 15, (2021) 90.
S. Singla, S. Chandra, N. Saini, Simulation study of dust magnetosonic excitations in a magnetized dusty plasma, Chinese Journal of Physics, (2023) 10-1016. https://doi.org/10.1016/j.cjph.2023.06.014
S. Chandra, C. Das, J. Sarkar, C. Chowdhari, Degeneracy affected stability in ionospheric plasma waves, Pramana-Journal of Physics, 98 (2), (2023) https://doi.org/10.1007/s12043-023-02687-x
S. Chandra, P.S. Maji, I. Maiti, K. Samanta, S. Mukherjee, S.Kapoor, J. Goswami, S. Nasipuri, A. Bala, S. Nasrin, Double Layers and Solitary Structures Observed in Ion Acoustic Mode Around Critical Regime and Its Possible Precursory Mechanism, IEEE Transactions on Plasma Science, (2024) 1-14. https://doi.org/10.1109/TPS.2024.3388272
S.Chandra, C. Das, D. Batani, A.A. Aliverdiev, R. Myrzakulov, A. Majumdar, S.Mallick, R. Ghosal, B. Panda, A. Sen, Evolutionary Stages of Envelope Soliton During Laser-Plasma Interaction, IEEE Transactions on Plasma Science, (2024), https://doi.org/10.1109/TPS.2024.3388317
C. Das, S. Chandra, A. Saha, P. Chatterjee, Field Modulations of Ion Acoustic Waves in Plasma With Vasyliunas-Schamel Distributed Electrons, IEEE Transactions on Plasma Science, (2024). https://doi.org/10.1109/TPS.2024.3388319
Copyright (c) 2024 Chinmay Das, Swarniv Chandra, Partha Sona Maji, Saptarshi Ghosh, Krishna Bulchandani, Pooja Thakur, Deepsikha Mahanta, Harshit Jain
This work is licensed under a Creative Commons Attribution 4.0 International License.
Views: Abstract : 106 | PDF : 44
Plum Analytics