Differential Configurational Entropy Measurement of Optical Dark Simlaritons
Abstract
The nonlinear Schrödinger equation (NLSE) describes various types of physical systems such as water waves, nonlinear optics, plasma Physics. In optics, NLSE describes a wide range of non-linearity effects in fiber optics. The solution to the above equation might be examined in order to investigate these consequences. Differential configurational entropy (DCE) is used to analyze the dark similariton solution in this specific situation of NLSE with bright and dark similariton solutions. DCE provides us with the measure of information required to examine stability for various physical systems and to characterize a systems spatial profile using the Fourier transform. It is show that even for the same solitonic solution of the NLS equation, the variations in the spatial shape is induced by different choices of the relevant parameter α. The global minima of the DCE correspond to the saturation of the breadth of dark solitons. While dark similariton waves propagate through waveguides, such low entropic values result in minimum dispersion of momentum modes, and this should be taken into consideration while designing the waveguides.
Downloads
Metrics
References
Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems, 4(4), (2016) 37. https://doi.org/10.3390/systems4040037
A.G. da Silva, R. da Roch, Information-entropic analysis of Korteweg–de Vries solitons in the quark–gluon plasma, Physics Letters B, 774, (2017), 98-102. https://doi.org/10.1016/j.physletb.2017.09.046
J. Zhang, Stability of Attractive Bose–Einstein Condensates. Journal of Statistical Physics 101, 731–746 (2000). https://doi.org/10.1023/A:1026437923987
D. Anderson, M. Lisak, Modulation instability of coherent optical-fibre transmission signals, Optics letters, 9, (1984), 468-470. https://doi.org/10.1364/ol.9.000468
S. Watanabe, H.S.J. van der Zant, S.H. Strogatz, T.P. Orlando, Dynamics of circular aarays of Josephson junctions and the discrete sine-Gordan equation, Physica D: Nonlinear Phenomena, 97(4), (1996) 429-470. https://doi.org/10.1016/0167-2789(96)00083-8
R.A.C. Correa, A. de Souza Dutra, M. Gleiser, Information-entropic measure of energy-degenrate kinks in two-field models, Physics Letters B, 737, (2014) 388-394.
A.G. da Silva, R. da Rocha, Information-entropic analysis of Korteweg-de vries solitons in the quark-gluon plasma, Physics Letters B, 774(2017) 98-102. https://doi.org/10.1016/j.physletb.2017.09.046
G. Karapetyan, Configurational entropy and ɸ and ρ mesons production in QCD, Physics Letters B, 781, (2018) 201-205.
M.J. Ablowitz, H. Segur, (1981). Solitons and the inverse scattering transform. Society for Industrial and Applied Mathematics, Philadelphia
V.B. Matveev, M.A. Salle, (1991) Darboux Transformations and Solitons, Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-662-00922-2
E.D. Belokolos, A.I. Bobenko, V.Z. Enol’skii, A.R. Its, V.B. Matveev, (1994) Algebro-Geometrical Approach to Nonlinear Integrable Equations, Springer, Berlin.
R. Hirota, (2004) Direct Methods in Soliton Theory, Springer, Berlin Heidelberg, Berlin.
V.E. Zakharov, A.B. Shabat, Xact Theory Of Two-Dimensional Self-Focusing And One Dimensional Self-Modulation Of Waves In Nonlinear Media, 61, (1971) 118-134.
W. X. Ma, M. Chen, Direct search for exact solutions to the nonlinear Schrödinger equation, Applied Mathematics and Computation, 215(8), (2009), 2835-2842. https://doi.org/10.1016/j.amc.2009.09.024
Copyright (c) 2024 Pooja, Swarniv Chandra, Krishna Bulchandani, Sukhdeep Kaur, Partha Sona Maji, Ratbay Myrzakulov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Views: Abstract : 36 | PDF : 22
Plum Analytics