The Effect of Gaseous Discharge on Star Formation

  • Krishna Bulchandani Department of Physics, St. Xavier's College (Autonomous), Mumbai, Maharashtra 400001, India
  • Saptarshi Ghosh Department of Physics, Ramakrishna Mission Residential College, Narendrapur, Kolkata, West Bengal 700103, India
  • Manisha Chowdhury Department of Physics, University of Calcutta, Kolkata, West Bengal 700073, India
  • Pooja Thakur Department of Physics, D.A.V. University, Jalandhar, Punjab 144012, India
  • Sharry School of Physics, The University of Sydney, Camperdown NSW 2050, Australia
Keywords: Collapse, Molecular clouds, Protostellar, Shockwaves

Abstract

This paper examines how gaseous discharge affects molecular clouds and how that affects star formation. In the magnetic field of the star, electrons, positrons, and ions interact to form the majority of the plasma's chemical makeup. The ZK equations are used for the study of gaseous discharge effects in the presence of shocks and solitons. According to the study, shockwaves produced by gaseous discharge are crucial in creating molecular clouds, which in turn affect the evolution of stars. Within molecular clouds, denser regions develop as a result of the compression of the interstellar medium caused by shockwaves. The gravitational collapse of these squeezed regions promotes the creation of protostellar cores and starts the star-formation process as a result. Shockwaves also affect the motion and turbulence of molecular clouds and improve the amplification of magnetic fields. Clarifying the basic principles regulating star formation and the ensuing creation of stellar populations inside galaxies requires an understanding of the complex interplay between shockwaves and molecular clouds.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

B.G. Elmegreen, J. Scalo, Interstellar turbulence I: observations and processes. Annual Review of Astronomy and Astrophysics, 42 (2004) 211-273. https://doi.org/10.1146/annurev.astro.41.011802.094859

W.W. Roberts, Large-scale shock formation in spiral galaxies and its implications on star formation. The Astrophysical Journal, 158 (1969) 123. https://ui.adsabs.harvard.edu/link_gateway/1969ApJ...158..123R/doi:10.1086/150177

M.W. Mueller, W.D. Arnett, Propagating star formation and irregular structure in spiral galaxies, Astrophysical Journal, 210 (1976) 670-678. https://ui.adsabs.harvard.edu/link_gateway/1976ApJ...210..670M/doi:10.1086/154873

D. Abe, T. Inoue, R. Enokiya, Y. Fukui, The Effect of Shock-wave Duration on Star Formation and the Initial Condition of Massive Cluster Formation. The Astrophysical Journal, 940 (2022) 1-10.

M. Ghosh, K. Sharry, D. Dutta, S. Chandra, Propagation of rogue waves and cnoidal waves formations through low frequency plasma oscillations, The African Review of Physics, 15 (2021).

P. Biermann, Density Shock Waves Driven by Star Formation-a Mechanism, Astronomy and Astrophysics, 22 (1973) 407.

S.W. Kinoshita, F. Nakamura, B. Wu, Star Formation Triggered by Shocks, The Astrophysical Journal, 92 (2021) 1-33. https://doi.org/10.3847/1538-4357/ac1d4b

S.D. Ryder, M.A. Dopita, The relationship between past and present star formation in galactic disks from CCD surface photometry. The Astrophysical Journal, Part 1, 430 (1994) 142-162. https://ui.adsabs.harvard.edu/link_gateway/1994ApJ...430..142R/doi:10.1086/174389

D.A. Hunter, J.S. Gallagher, Stellar populations and star formation in irregular galaxies, Publications of the Astronomical Society of the Pacific, 98 (1986) 1-28. https://doi.org/10.1086/131711

B. Wu, J.C. Tan, D. Christie, F. Nakamura, S. Van Loo, D. Collins, GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation, The Astrophysical Journal, 841 (2017) 88. https://doi.org/10.3847/1538-4357/aa6ffa

D.R. Reynolds, D.C. Collins, P. Wang, S.W. Skillman, B. Smith, R.P. Harkness, J. Bordner, J.H. Kim, M. Kuhlen, H. Xu, N. Goldbaum, C. Hummels, A.G. Kritsuk, E. Tasker, S. Skory, C.M. Simpson, O.Hahn, J.S. Oishi, G.C. So, F. Zhao, R. Cen, Y. Li, (The Enzo Collaboration), Enzo Collaboration. Enzo: An adaptive mesh refinement code for astrophysics, The Astrophysical Journal Supplement Series, 211 (2014) 1-52. https://doi.org/10.1088/0067-0049/211/2/19

M. J. Butler, J.C. Tan, Mid-infrared extinction mapping of infrared dark clouds. ii. the structure of massive starless cores and clumps, The Astrophysical Journal, 754 (2012) 1-24. https://doi.org/10.1088/0004-637X/754/1/5

Y. Shimajiri, P. Andre, E. Ntormousi, A. Men’shchikov, D. Arzoumanian, P. Palmeirim, Probing fragmentation and velocity sub-structure in the massive NGC 6334 filament with ALMA, Astronomy & Astrophysics, 632 (2019) 20. https://doi.org/10.1051/0004-6361/201935689

P. Padoan, A. Nordlund, A superAlfvénic model of dark clouds. The Astrophysical Journal, 526 (1999) 279-294. https://doi.org/10.1086/307956

Y.M. Georgelin, Y.P. Georgelin, (1976) The spiral structure of our Galaxy determined from H II regions, Astronomy and Astrophysics, 49 (1976) 57-79.

I.R. Cooke, I.R. Sims, Experimental studies of gas-phase reactivity in relation to complex organic molecules in star-forming regions, ACS Earth and Space Chemistry, 3 (2019) 1109-1134. https://doi.org/10.1021/acsearthspacechem.9b00064

W.W. Roberts, M. S. Roberts, F.H. Shu, On the Strength of the Galactic Shock Wave and the Degree of Development of Spiral Structure, In Symposium-International Astronomical Union Cambridge University Press, 58, (1974) 439-441. https://doi.org/10.1017/S0074180900024633

A.K. Dupree, L. Goldberg, Stimulated Emission of Recombination Lines in H i Regions, The Astrophysical Journal, 158 (1969) L49. https://ui.adsabs.harvard.edu/link_gateway/1969ApJ...158L..49D/doi:10.1086/180430

F.A. Goldsworthy, Ionization fronts in interstellar gas and the expansion of HII regions. Philosophical Transactions of the Royal Society of Londo, Series A, Mathematical and Physical Sciences, 253 (1961) 277-300. https://doi.org/10.1098/rsta.1961.0001

T. Matsumoto, Self-gravitational magnetohydrodynamics with adaptive mesh refinement for protostellar collapse, Publications of the Astronomical Society of Japan, 59 (2007) 905927. https://doi.org/10.1093/pasj/59.5.905

M.R. Krumholz, R.I. Klein, C.F. McKee, S.S. Offner, A.J. Cunningham, The formation of massive star systems by accretion, Science, 323 (2009) 754-757. https://doi.org/10.1126/science.1165857

H.R. Pakzad, Kadomstev-Petviashvili (KP) equation in warm dusty plasma with variable dust charge, two-temperature ion and nonthermal electron, Pramana, 74 (2010) 605-614. https://doi.org/10.1007/s12043-010-0053-4

M.R. Krumholz, C. Federrath, The role of magnetic fields in setting the star formation rate and the initial mass function, Frontiers in Astronomy and Space Sciences, 6 (2019) 7. https://doi.org/10.3389/fspas.2019.00007

A.K. Singh, S. Chandra, Second harmonic generation in high density plasma, The African Review of Physics, (2018) 12.

J. Sarkar, S. Chandra, B. Ghosh, Resonant interactions between the fundamental and higher harmonic of positron acoustic waves in quantum plasma, Zeitschrift für Naturforschung A, 75 (2020) 819-824. https://doi.org/10.1515/zna-2020-0012

S. Chandra, J. Sarkar, C. Das, B. Ghosh, Self-interacting stationary formations in plasmas under externally controlled fields, Plasma Physics Reports, 47, (2021) 306-317. https://doi.org/10.1134/S1063780X21030041

C. Das, S. Chandra, B. Ghosh, Nonlinear interaction of intense laser beam with dense plasma, Plasma Physics and Controlled Fusion, 63 (2020) 015011. https://doi.org/10.1088/1361-6587/abc732

C. Das, S. Chandra, B. Ghosh, Effects of exchange symmetry and quantum diffraction on amplitude-modulated electrostatic waves in quantum magnetoplasma, Pramana, 95 (2021) 78. https://doi.org/10.1007/s12043-021-02108-x

S. Chandra, C. Das, J. Sarkar, Evolution of nonlinear stationary formations in a quantum plasma at finite temperature, Zeitschrift für Naturforschung A, 76 (2021) 329-347. https://doi.org/10.1515/zna-2020-0328

J. Sarkar, S. Chandra, J. Goswami, C. Das, B. Ghosh, (2021) Growth of RT instability at the accreting magnetospheric boundary of neutron stars. In AIP Conference Proceedings, AIP Publishing. https://doi.org/10.1063/5.0037017

J. Goswami, S. Chandra, J. Sarkar, B. Ghosh, (2021) Quantum two stream instability in a relativistically degenerate magnetised plasma, In AIP Conference Proceedings, AIP Publishing, https://doi.org/10.1063/5.0037003

Mukhopadhyay, D. Bagui, S. Chandra, Electrostatic shock fronts in two-component plasma and its evolution into rogue wave type solitary structures, The African Review of Physics, 15 (2020) 25-32.

T. Ghosh, S. Pramanick, S. Sarkar, A. Dey, S. Chandra, Chaotic scenario in three-component Fermi plasma, The African Review of Physics, 15 (2020) 45-53.

M. Chatterjee, M. Dasgupta, P. Das, M. Halder, S. Chandra, Study of dynamical properties in shock & solitary structures and its evolutionary stages in a degenerate plasma, The African Review of Physics, 15 (2020) 75-89.

Roychowdhury, S. Banerjee, S. Chandra, Stationary formation of dust-ion acoustic waves in degenerate dusty plasma at critical regime, The African Review of Physics, 15 (2020) 102-110.

Majumdar, A. Sen, B. Panda, R. Ghosh, S. Mallick, S. Chandra, Study of shock fronts and solitary profile in a weakly relativistic plasma and its evolution into an amplitude modulated envelop soliton. The African Review of Physics, 15 (2020) 18-24.

S. Dey, D. Maity, A. Ghosh, P. Samanta, A. De, S. Chandra, (2022) Chaotic excitations of rogue waves in stable parametric region for highly-energetic pair plasmas, arXiv. https://doi.org/10.48550/arXiv.2204.04682

P. Samanta, A. De, S. Dey, D. Maity, A. Ghosh, S. Chandra, Nonlinear excitations in dust-ion acoustic waves and the formation of rogue waves in stable parametric region in a 3-component degenerate plasma, The African Review of Physics, 15 (2020) 10-17.

S. Ballav, S. Kundu, A. Das, S. Chandra, Non-linear behaviour of dust acoustic wave mode in a dynamic dusty plasma containing negative dust particles and positrons, The African Review of Physics, 15 (2020) 54-62.

Maiti, S. Chowdhury, P. Singha, S. Ray, R. Dasgupta, S. Chandra, Study of small amplitude ion-acoustic bunched solitary waves in a plasma with streaming ions and thermal electrons, The African Review of Physics, 15, (2020) 97-101.

Ghosh, S. Saha, T. Chakraborty, K. Sadhukhan, R. Bhanja, S. Chandra, Linear and Non-Linear Properties of Electron Acoustic Waves in A Viscous Plasma, The African Review of Physics, 15 (2020) 90-96.

Ghosh, J. Goswami, S. Chandra, C. Das, Y. Arya, H. Chhibber, Resonant interactions and chaotic excitation in nonlinear surface waves in dense plasma, IEEE Transactions on Plasma Science, 50 (2020) 1524-1535. https://doi.org/10.1109/TPS.2021.3109297

S. Ballav, A. Das, S. Pramanick, S. Chandra, Plasma shock wave in gamma-ray bursts: Nonlinear phenomena and radiative process, IEEE Transactions on Plasma Science, 50 (2020)1488-1494. https://doi.org/10.1109/TPS.2021.3112178

Das, P. Ghosh, S. Chandra, V. Raj, (Electron acoustic peregrine breathers in a quantum plasma with 1-D temperature anisotropy, IEEE Transactions on Plasma Science, 50 (2021)1598-1609. https://doi.org/10.1109/TPS.2021.3113727

H. Sahoo, C. Das, S. Chandra, B. Ghosh, K.K. Mondal, Quantum and relativistic effects on the KdV and envelope solitons in ion-plasma waves, IEEE Transactions on Plasma Science, 50 (2021)1610-1623. https://doi.org/10.1109/TPS.2021.3120077

S. Thakur, C. Das, S. Chandra, Stationary structures in a four-component dense magnetoplasma with lateral perturbations, IEEE Transactions on Plasma Science, 50 (2021)1545-1556. https://doi.org/10.1109/TPS.2021.3133082

S. Chandra, J. Goswami, J. Sarkar, C. Das, D. Nandi, B. Ghosh, Formation of electron acoustic shock wave in inner magnetospheric plasma, Indian Journal of Physics, 96 (2022) 3413-3427. https://doi.org/10.1007/s12648-021-02276-x

J. Sarkar, S. Chandra, A. Dey, C. Das, A. Marick, P. Chatterjee, Forced KdV and envelope soliton in magnetoplasma with Kappa distributed ions, IEEE Transactions on Plasma Science, 50 (2022) 1565-1578. https://doi.org/10.1109/TPS.2022.3140318

S. Sarkar, A. Sett, S. Pramanick, T. Ghosh, C. Das, S. Chandra, Homotopy study of spherical ion-acoustic waves in relativistic degenerate galactic plasma, IEEE Transactions on Plasma Science, 50 (2022)1477-1487. https://doi.org/10.1109/TPS.2022.3146441

D. Dutta, M. Ghosh, S. Chandra, Magnetosonic shocks and solitons in fermi plasma with quasiperiodic perturbation, IEEE Transactions on Plasma Science, 50 (2022)1585-1597. https://doi.org/10.1109/TPS.2022.3148183

Shilpi, Sharry, C. Das, S. Chandra, (2022) Study of quantum-electron acoustic solitary structures in Fermi plasma with two temperature electrons. Nonlinear Dynamics and Applications. Springer Proceedings in Complexity, Springer, Cham. https://doi.org/10.1007/978-3-030-99792-2_6

J. Sarkar, S. Chandra, J. Goswami, B. Ghosh, (2022) Heliospheric Two Stream Instability with Degenerate Electron Plasma, Nonlinear Dynamics and Applications. Springer Proceedings in Complexity, Springer, Cham. https://doi.org/10.1007/978-3-030-99792-2_3

S. Chandra, R. Banerjee, J. Sarkar, S. Zaman, C. Das, S. Samanta, B. Dasgupta, Multistability studies on electron acoustic wave in a magnetized plasma with supra-thermal ions, Journal of Astrophysics and Astronomy, 43 (2022) 71. https://doi.org/10.1007/s12036-022-09835-6

S. Chandra, S. Kapoor, D. Nandi, C. Das, D. Bhattacharjee, Bifurcation analysis of EAWs in degenerate astrophysical plasma: chaos and multistability, IEEE Transactions on Plasma Science, 50 (2022)1495-1507. https://doi.org/10.1109/TPS.2022.3166694

S. Dey, S. Ghosh, D. Maity, A. De, S. Chandra, Two-stream plasma instability as a potential mechanism for particle escape from the Venusian ionosphere, Pramana, 96 (2022) 213. https://doi.org/10.1007/s12043-022-02462-4

S. Singla, S. Chandra, N.S. Saini, Simulation study of dust magnetosonic excitations in a magnetized dusty plasma, Chinese Journal of Physics, 85 (2023) 524-533. https://doi.org/10.1016/j.cjph.2023.06.014

S. Chandra, C. Das, J. Sarkar, C. Chaudhuri, Degeneracy affected stability in ionospheric plasma waves, Pramana, 98 (2023) 2. https://doi.org/10.1007/s12043-023-02687-x

Published
2023-12-17
How to Cite
Bulchandani, K., Ghosh, S., Chowdhury, M., Thakur, P., & Sharry. (2023). The Effect of Gaseous Discharge on Star Formation. Frontiers in Advanced Materials Research, 5(2), 19-33. https://doi.org/10.34256/famr2323
Section
Articles



Views: Abstract : 8 | PDF : 8

Plum Analytics