Characterization and Applications of Non-Magnetic Rotating Gliding Arc Reactors - A Brief Review

  • Ananthanarasimhan J Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
  • Lakshminarayana Rao Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
  • Anand M Shivapuji a Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
  • Dasappa S Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
Keywords: Perovskite, Ultrasonic velocity, Grain size, Curie temperature

Abstract

Gliding arc discharge (GAD) reactors are known for high energy efficiency and good chemical selectivity compared to non-thermal plasmas such as glow discharge, corona and dielectric barrier discharge. Reported literature identified that planar diverging GAD have non-uniform gas treatment (e.g. only 20% of gas processed by plasma depending on electrode configuration). Further requirement of minimum limit gas velocity to drag the arc results in lower gas residence time.

This paper attempts to investigate the GAD performance and preliminary studies to overcome some of the identified drawbacks, by using only fluid mechanics without magnetic field (rotating gliding arc (RGA)) inside the plasma reactor developed in various research laboratories. This article discusses the applications of GAD and also focuses on bringing out the performance and comparing with the results from the existing non-magnetic rotating gliding arc reactors. The paper also summarizes results from literature in such reactor designs.

Downloads

Download data is not yet available.

References

A. Fridman, Plasma Chemistry, Cambridge University Press, (2008)

J. Meichsner, M. Schmidt, R. Schneider and H.E. Wagner Nonthermal Plasma Chemistry and Physics, CRC Press (2013)

C.S. Kalra, Y.I. Cho, A. Gutsol and A. Fridman, Gliding arc in tornado using a reverse vortex flow, Rev. Sci. Instrum. 76 (2005)

H. Zhang, F. Zhu, X. Li and C. Du, Dynamic behavior of a rotating gliding arc plasma in nitrogen: Effects of gas flow rate and operating current Plasma, Sci. Technol. 19 (2017) 045401.

S. Liu, D. Mei, L. Wang and X. Tu, Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor, Chem. Eng. J. 307 (2017) 793–802.

Y.C. Yang and Y.N. Chun, Naphthalene destruction performance from tar model compound using a gliding arc plasma reformer Korean, J. Chem. Eng. (2011) 28 539–43.

Bie C De, Fluid Modeling of the Plasma-Assisted Conversion of Greenhouse Gases to Value-Added Chemicals in a Dielectric Barrier Discharge, Universiteit Antwerpen, (2016)

A. Bogaerts and E.C. Neyts, Plasma Technology: An Emerging Technology for Energy Storage ACS Energy, Lett. 3 (2018) 1013–27.

R. Snoeckx and A. Bogaerts, Plasma technology-a novel solution for CO2conversion? Chem. Soc. Rev. 46 (2017) 5805–63

H. Zhang, L. Li, X. Li, W. Wang, J. Yan and X. Tu, Warm plasma activation of CO2 in a rotating gliding arc discharge reactor J. CO2 Util. 27 (2018) 472–9

D.H. Lee, K. Kim, M.S. Cha and Y. Song, Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane Proc. Combust. Inst. 31(2007) 3343–51

L. Yu, J.H. Yan, X. Tu, M.J. Ni, Y. Chi, X.D. Li and S.Y. Lu, Three working patterns of gliding arc in tornado IEEE Trans. Plasma Sci. 39 (2011) 2832–3

S.Y. Lu, X.M. Sun, X.D. Li, J.H. Yan, C.M. Du, S.Y. Lu, X.M. Sun, X.D. Li, J.H. Yan and C.M Du, Physical characteristics of gliding arc discharge plasma generated in a laval nozzle, Phys. Plasmas 19 (2012) 72122

X. Guofeng and D. Xinwei, Electrical characterization of a reverse vortex gliding arc reactor in atmosphere IEEE Trans. Plasma Sci. 40 (2012)3458–64

T. Zhao, J Liu, X. Li, J. Liu, Y. Song, Y. Xu and A. Zhu Dynamic Evolution of 50 -Hz Rotating Gliding Arc Discharge in a Vortex Air Flow IEEE Trans. Plasma Sci. 42 (2014) 2704–5

Y. Ren, X. Li, S. Lu and J. Yan, Generation Process and Electric Arc Motion Characteristics of DC Vortex Gliding Arc Plasma IEEE Trans. Plasma Sci. 42(2014) 2702–3

A.F. Bublievsky, J.C. Sagás, A.V. Gorbunov, H.S. Maciel, D.A. Bublievsky, G.P. Filho, P.T. Lacava, A.A. Halinouski and G.E. Testoni, Similarity relations of power-voltage characteristics for tornado gliding arc in plasma-assisted combustion processes IEEE Trans. Plasma Sci. 43 (2015) 1742–6

M. Ramakers, J.A. Medrano, G. Trenchev, F. Gallucci and A. Bogaerts, Revealing the arc dynamics in a gliding arc plasmatron: A better insight to improve CO2 conversion Plasma Sources, Sci. Technol. 26 (2017) 125002

T. Zhao, J. Liu, X. Li, J. Liu, Y. Song and Y. Xu, Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow, Phys. Plasmas. 21(2014) 053507

C. Kong, J. Gao, J. Zhu, A. Ehn, M. Aldén and Z. Li, Characterization of an AC glow-type gliding arc discharge in atmospheric air with a current-voltage lumped model, Phys. Plasmas 24 (2017) 093515

T. Nunnally, A. Tsangaris, A. Rabinovich, G. Nirenberg, I. Chernets and A. Fridman, Gliding arc plasma oxidative steam reforming of a simulated syngas containing naphthalene and toluene, Int. J. Hydrogen Energy 39(2014) 11976–89

Z. Bo, J.H. Yan, X.D. Li, Y. Chi, Chéron, Bruno, K.F. Cen, The Dependence of Gliding Arc Gas Discharge Characteristics on Reactor Geometrical Configuration Plasma, Chem. Plasma Process. 6 (2007) 691–700

H. Zhang, F. Zhu, X. Li, K. Cen, C. Du and X. Tu, Rotating Gliding Arc Assisted Water Splitting in Atmospheric Nitrogen Plasma, Chem. Plasma Process. 36(2016) 813–34

H. Zhang, X.D. Li, Y.Q. Zhang, T. Chen, J.H Yan and C.M. Du, Rotating gliding arc codriven by magnetic field and tangential flow IEEE Trans. Plasma Sci. 40(2012) 3493–8

H. Zhang, F. Zhu, X. Tu, Z. Bo, K. Cen and X. Li, Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas Plasma, Sci. Technol. 18 (2016) 473–7

A. J, H. Zhang, X.D. Li, S.Y. Lu, C.M. Du and J.H. Yan, 2015 Determination of Spectroscopic Temperatures and Electron Density in Rotating Gliding Arc Discharge IEEE Trans. Plasma Sci. 43 836–45

X. Tu and J.C. Whitehead, Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials, Int. J. Hydrogen Energy 39(2014) 9658–69

X.D. Li, H. Zhang, S.X. Yan, J.H. Yan and C.M. Du, Hydrogen production from partial oxidation of methane using an AC rotating gliding arc reactor IEEE Trans. Plasma Sci. 41(2013) 126–32

T. Ombrello, Y. Ju and A. Fridman, Kinetic Ignition Enhancement of Diffusion Flames by Nonequilibrium Magnetic Gliding Arc Plasma AIAA J. 46(2008) 2424–33

A. Gutsol, A. Rabinovich and A. Fridman, Combustion-assisted plasma in fuel conversion, J. Phys. D. Appl. Phys. 44 (2011) 274001

M. Ni, H. Yang, T. Chen, H. Zhang, A. Wu, C. Du and X. Li, Degradation of Acid Orange 7 in an Atmospheric-Pressure Plasma-Solution System (Gliding Discharge) Plasma Sci. Technol. 17(2015) 209–15

C. Du, J. Tang, J. Mo, D. Ma, J. Wang, K. Wang and Y. Zeng, Decontamination of Bacteria by Gas-Liquid Gliding Arc Discharge: Application to Application to Escherichia coli IEEE Trans. Plasma Sci. 42(2014) 2221–8

W. Wang, D. Mei, X. Tu and A. Bogaerts, Gliding arc plasma for CO2conversion: Better insights by a combined experimental and modelling approach, Chem. Eng. J. 330(2017)11–25

J.H. Han, Experimental Investigation of Plasma-Assisted Combustion of Heavy Hydrocarbons Using Gliding / Rotating Arc, University of Cincinnati, Thesis (2012)

Y. Kusano, B.F. Sørensen, T.L. Andersen, H.L. Toftegaard, F. Leipold, M. Salewski, Z. Sun, J. Zhu, Z Li and M. Alden, Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester, J. Phys. D. Appl. Phys. 46(2013)135203

Published
2019-05-30