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Abstract: Semiconductor plasma is often found in chaotic unpredictable motion which shows 

some anomalous behaviors providing multiple challenges to work with the instabilities in a 

semiconductor device. Experimental studies have shown that these instabilities give rise to 

fluctuations and azimuthal non-uniformities, which are usually present in the semiconductor. 

The energy fluctuations have also been observed in some of the cases. In this paper, we have 

obtained the fluctuations in velocity field by integrating the linearized governing hydrodynamic 

equations with RungeKutta method of order four (RK4). Then, we have come up with a 

mathematical formulation, where these fluctuations can be obtained from a KdV family equation 

with homotopy-assisted symbolic simulation. We have also obtained the relative velocity between 

the solitary structures for different parameters. Finally, by giving a detailed explanation of the 

behavior of semiconductor devices, we can study the usefulness of formulating the plasma waves 

in the various regime, and predict their characteristics theoretically. 

Keywords: Semiconductor plasma, Quantum degeneracy, Transverse fluctuation, Simulation, 

Quantum Hydrodynamics model, RungeKutta method 
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1. Introduction 

In the context of the technological revolution in the 21st century, semiconductor plasma 

has been playing a major role since the last few decades in the solid-state electronics industry. 

Their study has been increasing exponentially with time [1]. Following, electron-hole plasma is 

found in high speed, high power semiconductor switches, and oscillators [2]. Plasma Processing 

of Semiconductors contains many contributions and covers plasma etching, plasma deposition, 

plasma-surface interactions, numerical modeling, plasma diagnostics, less conventional 

processing applications of plasma, and industrial applications [3, 4]. Their properties are used to 

describe the operation of high-gain photoconductive semiconductor switches (PCSS), resonant 

tunneling diodes, impact ionization avalanche transit time (IMPATT) devices and Gunn 

oscillators [5-10]. Models for electronic polarizability, plasma resonances, transit time effects, 

and plasma cooling in diodes, transistors, 2-dimensional field-effect transistors (FET), and 

quantum wires need to depart from the single particle interactions and include collective, many-

body effects and hydrodynamic equations to agree with the experimental results. From the above 

argument, it is evident that we are way behind the point of applicability of semiconductor plasma 

studies in real life. However, a proper analytical and simulation study of semiconductor plasma 

can revolutionize the field of computation and electronic devices was presented by Lu et.al. [11]. 

It can greatly enhance the stability and predictability of the said devices. Keeping that in mind, 

we have tried to obtain the behavior of quantum plasma, considering three species in the system. 

In this context, the problem of exotic plasma is extensively studied by many research groups [12-

17]. The same has been done for ion-acoustic mode in and electron acoustic mode in [18, 21, 

22]. 

Nonlinear Fluctuations: The theoretical investigation of the nonlinear interaction of 

waves has been associated with numerous experiments. Nonlinear effects can be classified in 

plasma according to their degree of nonlinearity [23-26]. These plasma waves can evolve and 

form rogue waves as shown by some researchers [27-28]. The method of three-wave interaction 

is used to study nonlinear processes, where the energy of nonlinear interaction [29]. Is lower than 

that of interacting waves. This theory was first applied to the finite and inhomogeneous medium 

in the three-wave processes. The nonlinear mechanisms operate in multiple layers and are 

described by the terms appearing in the governing equations [30]. In periodic structures, the 

nonlinear excitation of the second harmonic can be investigated. The features of a nonlinear 

interaction arise from the periodicity of the potential structure [12, 31, 32]. The nonlinear 

resonance means that the matrix nonlinear element of the wave interaction is independent of the 

z coordinate within the nonlinear layers [33]. In a semiconductor periodic structure, the three-

wave interaction happens which pumps the energy from the waves with lower frequencies to the 

waves with higher frequencies. The periodic structures are very effective for the efficient 

generation of waves, which may be used for frequency multiplication, conversion, studies of 

physical parameters of structures, etc. 
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As we know that plasma state is a non-equilibrium state having a very high collective 

fluctuation level so that the nonlinear interaction between the modes becomes essential. To form 

a quantitative theory of plasma turbulence, one must allow the non-linear wave interactions  

inside the plasma [34]. The non-linear fluctuation theory is applied to study the electromagnetic 

fluctuations in a non-equilibrium plasma and their time evolution; peculiar features of the 

fluctuation spectra [35] are associated with particle collisions and non-linear wave interactions 

[29] in non-linear plasma. Fluctuations and nonlinear Wave Interactions are a theory of 

fluctuations in a homogeneous plasma [36]. 

Table 1. Typical values of the parameters for different semiconductors  

 

 

 

 

The spectral distribution of stationary field fluctuations [37]. is determined and the 

possibility of induced fluctuation enhancement by external fields and the scattering and 

transformation of waves and radiation in non-equilibrium plasma can be studied based on a 

generalized kinetic equation allowing for interaction between waves and fluctuation fields in 

Figure 1. Schematic experimental Setup and formation of semiconductor plasma 
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plasma [38]. Fluctuations inside a semiconductor plasma are highly related to the temperature 

profile inside a plasma. When fluctuations are excited in plasma, the ion temperature becomes 

high. Electron density fluctuations in a two-component plasma of electrons and positive ions are 

developed within the random phase approximation. A dielectric formulation is used extensively 

to describe the fluctuations [39-41]. investigation of various examples clarifies such facts as 

collective vs. individual particle aspects of fluctuations [42, 43]. B. Experimental Observations 

From the words of Maude, we learn that, for both low (2-20kHz) and intermediate frequency 

(20-100kHz) range experimental observations, there may be oscillations in crossed field closed 

electron drift hall discharges which can be useful for identification and extraction of properties 

of coherent structures associated with different plasma instabilities within the discharge channel 

[44]. Hence we can analyze the phase velocity over the various frequency range. Under external 

magnetic field as given in [45]. This phenomenon evidences how fluctuations can be influenced 

in this hall discharges and opens up another interesting field Quantum Hall Effect under low 

pressure in semiconductor plasma due to many body effects. Here we consider different general 

states with different spin polarization at any given fraction and hence observe the quantum phase 

transition as a function of the energy which is changing with the spatial separation for different 

magnetic field strength [46]. This kind of nonlinear dynamical behavior of electron discharge is 

useful in the enhancement of turbulence which influences the axial electron transport widely 

used in generating a relatively high-velocity ion beam used in stationary plasma thruster for space 

propulsion application [47]. Fig. (1d) show an experimental setup with GaAs semiconductor 

plasma under the external electric and magnetic field where fluctuations in energy arise due to 

the influence of Fermi pressure on interacting electrons, ions, and holes. Related works can be 

found in the works of Markowich Herbots and others [48-51]. 

 

2. Mathematical Formulations 

2.1. Quantum Hydrodynamics 

The theoretical description of quantum plasmas must consider quantum degeneracy  

effects such as non-locality, spin-statistics, and correlations (non-ideality) appropriately on the 

relevant scales [52, 53]. In such cases where correlations and their dynamics are of minor 

importance, simpler approaches such as Quantum hydrodynamics (QHD) is being used for 

quantum plasmas [13, 54-57]. In the framework of the local density approximation of the free 

energy for finite temperature plasmas, QHD theory is consistently derived with first-order density 

gradient correction. The key ingredients of QHD are often used for the ideal Fermi pressure 

and the socalled Bohm potential in the context of quantum plasmas. The random phase 

approximation (RPA) must be corrected by constant pre-factors for both the Fermi pressure and 

the Bohm potential to reach an agreement with the results of the more fundamental kinetic 

theory in its simplest form [58-60]. For the QHD model, a fully non-local Bohm potential goes 

beyond all previous results and is linked to the electron polarization function in the random 

phase approximation. For the case of the relaxation time approximation the dynamic QHD 

exchange-correlation potential is introduced in the framework of local field corrections 
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[54,61,62]. In lower dimensions, the consistent derivation of the quantum potential can be used 

for the formulation of a QHD model for confined electrons. 

 

2.2. Governing equations  

Here, we consider a collision less, inhomogeneous electronion plasma. For all the 

mathematical purposes, we have modelled our system as three species plasma using QHD model 

equations [63, 64, 66, 67-75, 76-83]. Let us consider an electron fluid with number density ne, 

fluid velocity ue, charge −e, mass me, exchange correlation potential Vxce and scalar quantum 

degeneracy pressure Pe. Similarly, we take ions with number density ni, fluid velocity ui , charge 

e, mass mi and holes with number density nh, fluid velocity uh, charge e, mass mh, exchange 

correlation potential Vxch and scalar quantum degeneracy pressure Ph. Taking electrostatic 

potential ϕ, we get the following governing equations where 
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species. At equilibrium, the charge neutrality condition 0 0 0e i hn n n= +
 is 

applied.The physical quantities in Eqs. (1)–(5) are appropriately normalized by the 
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   For detailed calculation refer to 

the works of Das et al  [6]. Eq. 1 represents the continuity of electrons, holes and ions 

respectively. While Eq. 2, Eq. 3 and Eq. 4 represent the momentum equations in that order. Eq. 

5 is the Poisson’s equation for this system (one dimensional time independent potential). A 

detailed explanation of the equations has been given in [84-85]. 
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Here we have considered that the ions form a stationary background for the mobile 

electrons and holes. The various terms in the momentum equation represent different dynamical 

factors [86], considered in this model. These are given below.  

a) Momentum flux across boundary: The first term gives the conservation of momentum 

flux and thereby quantifying the difference between the influx and outflux of the 

momentum. This unbalance is later described by the rest of the terms. 

b) Electromagnetic force: The second term, given by the spatial derivative of electric 

potential times the charge of the particles, gives the electric Lorentz force acting on the 

particles. It is then divided by the mass of the constituents to be incorporated into the 

momentum equations. 

c) Exchange and correlation effects: The third term incorporates exchange and correlation 

effects as given by Manfredi et al. [87]. The effect of this term has been demonstrated in 

[88] for semiconductor plasma, in [89] for single-walled carbon nanotubes and in [87] 

for thin metal films. Here, Vxc is given by Eq. (6). 

( )
2

1/3 1/3

1/3

0.034
0.985 1 ln 1 18.37xc e B e

B e

e
V n a n

a n

 
= − + + 

 ò    (6)

 

Here, αB* is the Bohr radius and ϵL is the dielectric constant. This term is present in 

the equations for electrons and holes but they are excluded in the momentum transfer 

equation of ions since they are assumed to form a stationary background.  

d) Quantum degeneracy pressure: When the electrons and holes are shrunk into the 

degenerate energy levels, they tend to act against it and rearrange themselves into a more 

relaxed state. This phenomenon gives rise to quantum degeneracy pressure. Since we 

have Fermions like electrons and holes on our hand, for our studies we will use Fermi 

pressure as given in contrary to the relativistic degeneracy as given in [90-93]. It is 

expressed mathematically in Eq. (7). 

 

( )
2

2 2 53

3
3

5
P n

m


=

   (7)  

We have taken the divergence of the Fermi pressure and divided it by mass and number 

density to incorporate into our momentum conservation equation. Ions are assumed to 

be immobile. Hence they don’t contribute to the Fermi gas. Thus there is no point in 

incorporating the pressure term in the momentum equation for ions.  

e) Bohm potential: The central concept of one of the de Broglie–Bohm formulations of 

quantum mechanics is the quantum potential, introduced by David Bohm in 1952  [94-

96]. It is previously known as quantum-mechanical potential, subsequently quantum 

potential. Later Bohm and Basil Hiley elaborated in its interpretation as an information 

potential that acts on a quantum particle [97]. It is sometimes known as quantum 

potential energy, Bohm potential, quantum Bohm potential  or Bohm quantum 
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potential [98]. In the de Broglie–Bohm theory, the quantum potential is a term within 

the Schrodinger equation to guide the movement of quantum particles. The difference 

of the Weyl and Riemann scalar spatial curvature is produced by an ensemble density 

of paths associated with one, and only one particle can be shown due to the 

proportionality of Bohm’s quantum potential 

2 2

2

1
,

2
Q

n
V

m x xn

  
= −      where

2

2m
−

is the 

constant of proportionality. It can be generalized to the relativistic case. The 

Schrodinger, Klein–Gordon and Dirac equations can be derived by this geometrization 

process  of quantum mechanics. The Bohm interpretation is based on these principles 

[99, 100, 95, 96, 101]. 

• Every particle travels in a definite path [97].  

• The state of N particles is affected by a 3N dimensional field, which pilots the 

motion of the particles. This field evolves according to the Schrodinger 

equation. The positions of the particles do not affect the wave function 

corresponding to the field.  

• Each particle must have momentum and with probability density, the particles 

form a statistical ensemble.  

f) Viscosity: Viscosity term is responsible for plasma wave amplification and hence 

generating instability [102–104]. This kind of phenomenon is applied to study electron 

transmission in solid-state electronic devices. There can be both drift and diffusion due 

to this viscosity term which stabilizes the plasma waves. 

 

2.3. Perturbation 

 The following perturbation expansion has been used for our system: 
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2.4. Stretching 

Additionally, we have used the following stretching terms 
1/2 3/2( ),x t t    = − =

 

 

2.5. KdV-like equation 

 Using the governing equations and the perturbation relations along with the stretching 

terms given above, we get the following KdV like equations in Eq. (8) 

2 3
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Where 

5 3 6 72 4
1 2 3 4 5 6

1 1 1 1 1 1

, , , , ;
D D D DD D

A A A A A and A
D D D D D D

= = = = = =

, 

The coefficients D1 to D7 are detailed functions of the parameters which can be obtained 

from the authors upon request. 

 

3. Results 

Initially, we have solved the linear versions of the governing equations using the 

RungeKutta (RK4) method excluding ions and obtained the plots given in Fig. (2) for arbitrary 

parameters. Then, considering the parameters for different types of semiconductors, we have 

obtained the following. In case of a two-dimensional semiconductor plasma, while we are 

analyzing fluctuations in density with respect to the spatial coordinates for some specific values 

of viscosity, collision term, time, and charge carrier density we see in Fig. (5) that there are certain 

peaks for electrons for a localized region in the positive direction while the same profile is 

repeated for holes but in the negative direction. This kind of transverse fluctuation arises due to 

external perturbation i.e. electric field and magnetic field which orient the particles in a particular 

direction and hence the particles accumulate for a particular location at a particular frequency. 

Due to these transverse fluctuations in the density of electrons inside the semiconductor plasma 

under perturbative effects, the field velocity also shows oscillation for a particular instant of time. 

When electrons localize at a particular region they either try to converge or diverge from the 

field as given in Fig. (3) for the X component and Fig. (4) for the Y component. Therefore we 

come across the peaks in velocity profile in opposite directions for electrons and holes 

respectively at around y=0.7 and x=0.2. The velocity streamline shows the direction of electrons. 

The same kind of fluctuations are observed in the x directional velocity and y directional velocity 

and electric field profile for a particular instant time. There we observe both diverging and 

converging fields depending upon the doping concentration of the semiconductor used. The 

sinusoidal effects attenuate at the boundary. The effects of the electric field have been given in 

Fig. (6) and the velocity field in Fig. (7). The aforementioned quantities have also been plotted 

for GaAs in Fig. (8), in Fig. (9) forGaSb and in Fig. (10) forInP. As given in, the typical values of 

the parameters for the different semiconductors are given in Table- (I) [105]. We have obtained 

a similar kind of result, regardless of the parameters or the semiconductor materials. Thus, it 

might imply a general theory for these semiconductors. 

Further, we have moved on to observe, how plasma waves are generated in these 

semiconductors. Here, we have obtained a new kind of KdV family equation as our 

evolutionaryequation i.e. Eq. (8). The equation has been reduced and given in Appendix (-A) as 

Eq. (9). In this equation, the first term signifies the time evolution of the system. The second 

term with coefficient A1 gives velocity dependent damping. The term with coefficient A2 gives 

viscosity effect. The terms with the coefficients A3, A4 A5 and A6 gives dispersive effect, 

amplitude dependent damping, nonlinear effect and drift effects respectively. Solving our 
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evolutionary equation in a method called Homotopy Assisted Symbolic Simulation as given in 

[106, 107], we have obtained the following results. From Fig. (11), we can see that the soliton is 

not stationary. It propagates with time, through space and there is some kind of amplitude 

modulation as shown in [20, 108, 106, 19]. Thus, this might be a envelope soliton [109, 71], as 

obtained from the solution of Eq. (8). From Fig. (12), Fig. (13) and Fig. (14) we can see the 

relative motion of solitary structures in spatial coordinate for the variance in time, for different 

parameters and its evolution with time. In Fig. (12a), we can see the different solitary structures 

for different fractional presence of the ions in the plasma. In Fig. (12b), as the time evolves, the 

order is not the same anymore. 

 

 

 

 

 

Figure 2. (a) Fluctuation in y component of velocity (b) Fluctuation in x component of 

velocity (c) Fluctuation in density (d) Fluctuation in electric field and (e) Velocity field 

profile for a two component e-h plasma for arbitrary parameters 
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Figure 3. Transverse (Y) component of velocity for n0 = 4.7 × 1016, ϵ = 15.69 in GaAs 
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Thus, they may have a relative motion. In Fig. (12c), this relative motion becomes more 

prominent. In Fig. (13) and Fig. (14), the same relative motion has been shown for different 

viscosity coefficients and initial number density of holes respectively. In Fig. (15), the energy 

fluctuations in spatial and temporal coordinates have been shown for different types of 

semiconductor materials. In each of these cases, we can see the zigzag pattern, as the fluctuations 

Figure 4. Longitudinal (X) component of velocity for different parameters in GaAs 
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evolve. Due to the periodic boundary conditions, however, we can see the complete fluctuation 

profile in the taken range. 

 

 

 

 

 

Figure 5. Density profile for different parameters in GaAs 
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Figure 6. Electric field lines for different parameters in GaAs 
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Figure 8. Field variables of GaAs: (a) Transverse component of velocity, (b) Longitudinal 

component of velocity, (c) Density profile, (d) Electric field lines, (e) Velocity streamlines 

Figure 8. Velocity streamlines for different parameters in GaAs along with the 

fluctuations 
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Figure 9. Field variables of GaSb: (a) Transverse component of velocity, (b) Longitudinal 

component of velocity, (c) Density profile, (d) Electric field lines, (e) Velocity streamlines 

 

Figure 10. Field variables of InP: (a) Transverse component of velocity, (b) Longitudinal 

component of velocity, (c) Density profile, (d) Electric field lines, (e) Velocity streamlines 

Figure 11. Temporal evolution of the soliton 
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Figure 12. Evolution of the soliton for different equillibrium ratio of electrons to holes (δ) 

Figure 13. Evolution of the soliton for different viscosity constant of hole fluid (ηe0) 

Figure 14. Evolution of the soliton for different viscosity constant of hole fluid (ηh0) 
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4. Conclusions 

Here we can conclude that the nature of ion-electron implantation and diffusion in a 

semiconductor device under a high-pressure regime results in random fluctuations in energy. 

This is kind of a nonlinear behavior is pronounced in ultra-small i.e nanoscale semiconductor 

devices enforcing the spatial scale of doping with anomaly. Considering the quantum effects, it 

can be further used to design fluctuation-resistant structures of semiconductor devices. In our 

future work we can extend our analysis including the study of variations for different doping 

concentrations for different compounds at different time scales and investigate whether there can 

be any kind of instability might arise due to particle interactions. This theoretical concept can 

also be further implemented in some experimental research especially in the nanophysics regime 

of space plasma field as well. We can further extend our analysis including the study of variations 

for different doping concentrations for different compounds at different time scales and 

investigate whether there can be any kind of instability arising due to particle interactions. 

Experimental results on the kink instability in silicon semiconductor plasma has motivated us to 

further investigate this kind of instability in the presence of electric and magnetic field. The 

instability of electron-ion hole acoustic waves due to the electron beam in semiconductor 

quantum plasma can be useful in finding the variation of the growth rate of the unstable mode, 

over a wide range of system parameters. The thermal effects are another important topic we can 

investigate through our further instability analysis. 

Figure 15. Fluctuations in different types of semiconductors 
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