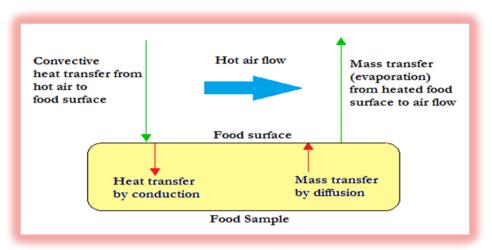


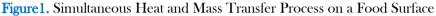
Study on Performance of modern Solar Dryer

A.Tajuddin *, S.Ramasamy *

^a Department of Agriculture Engineering, Sri Shakthi Institute of Engineering and Technology, Coimbatore-641062, Tamil Nadu, India

* Corresponding Author:

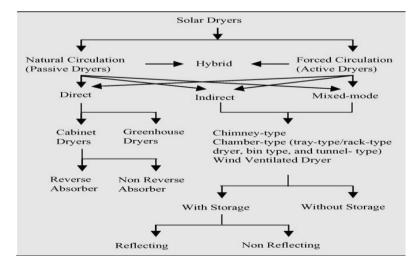

Received: 19-07-2020, Revised: 03-10-2020, Accepted: 07-10-2020, Published: 12-10-2020


Abstract: This paper presents the state of various kinds of solar dryers that are widely used today and about drying process that has been perform during drying of various food products and percentage containing moisture in different food products. The indirect, direct and mixed mode dryers that have shown potential in drying agricultural products in the tropical and subtropical countries are discussed. A side from identifying the active and passive mode solar dryers, we also highlight the environmental influence on solar energy (harnessing) that plays a vital role in the solar drying sector and says that the indirect solar dryer is more suitable than other dryers and recirculation of air in an indirect dryer can reduce the drying time of food product in comparison to normal indirect solar dryers. The dryer having recirculation of air have more efficiency than other dryers.

Keywords: Solar dryers, environmental influence, food product, solar energy, agricultural products.

1. Introduction

Drying is a complicated process involving simultaneous heat and mass transfer. The required amount of energy to dry a particular product depends on many factors, such as initial moisture content, final moisture content, drying air temperature, relative humidity and velocity. Various mathematical models describing the drying behavior of different food materials have been proposed to optimize the drying process and design efficient dryers. Modelling is advantageous because full scale experimentation of different products and configurations of drying system is very time consuming and costly. In order to improve the quality, the traditional natural sun drying must be replaced by modern drying methods. Drying characteristics of specific products should be determined to improve the quality.



Classification of Solar Dryer

On the basis of their operating temperature ranges that is high temperature solar dryer and low temperature solar dryer:

- ✓ Air movement modeInsulation exposure
- ✓ Air flow direction
- ✓ Dryer arrangement
- ✓ Solar contribution
- ✓ Type of fruit to be dried

On the basis of air flow

Figure 2. Classification of Solar Dryer

Product	Moisture Content		Max. Allowable Temp.	Drying Time (h)
	Inital %	<u>Final %</u>	(°C)	
Onions	85	6	55	48
Onions Flakes	80	10	55	24
Onion Rings	80	10	55	
Tomatoes	95	7	60	36
Green Peas	80	5	60	8-10
Grapes	80	15-20		32-40
Apples	82	11-14	65-70	24-26
Figs	70	20	70	32
Bananas	80	15	70	15
Cassava	62	17	-	-
Copra	30	5	-	-
Tobacco	90	10	-	96
Coffee	65	11	-	288
Garlic Flakes	80	4	-	48
Chillies	80	5	-	48
Ginger	80	10	-	168
Cabbage	80	4	65	48
Tea	80	3	-	96
Pepper	71	13	-	48
Turmeric	80	10	-	120
Potato Chips	75	13	70	72
Paddy Raw	22-24	11	50	-
Paddy, Parboiled	30-35	13	50	-
Maize	35	15	60	-
Wheat	20	16	45	

Table 1. Moisture Contents of Solar Drying of Various Agricultural Produces.

Millet	21	4	-	
Corn	24	14	-	
Rice	24	11	50	
Cauliflowers	80	6	65	
Carrot	70	5	75	
Green Beans	70	5	75	
Garlic	80	4	55	
Cabbage	80	4	55	
Sweet Potato	75	7	55	
Red Lauan	90	20	-	
Potatoes	75	13	75	
Spinach	80	10	-	
Prunes	85	15	55	
Apricots	85	18	65	
Peaches	85	18	65	
Guavas	80	7	65	
Mulberries	80	10	65	
Okra	80	20	65	
Pineapple	80	10	65	
Yams	80	10	65	
Nutmeg	80	20	65	
Sorrel	80	20	65	
Coffee	50	11	-	
Coffee Beans	55	12	-	
Cocoa Beans	50	7	-	
Cotton	50	9	75	
Cotton Seeds	50	8	75	
French Beans	70	5	75	
Ground Nuts	40	9	-	

Methods Of Solar Drying Technologies Direct Solar Drying

Direct solar drying is the conventional way of drying the products. In this method the products are directly exposed to the solar radiation and reduce the moisture content to atmospheric air. The air movement is due to density difference. It is broadly classified into two categories:

(1) The outdoor open air solar drying.

Figure 3. Open Air (Direct) Solar Dryer

(2) Through a transparent cover which protects partly the foodstuff from rain and other natural phenomena i.e. a passive solar drying method.

Figure 4. Transparent Glass Covered Direct Solar Dryer

This technique involves the thin layer of product spread over large space to expose to solar radiation. This process for a long time until the products will dry to a required level. The surface floor made from the concrete or particular area of soil is making applicable for Outdoor direct sun drying. This type of drying method is useful for grains. Material is led on outdoor floor for a long time, usually 10– 30 days. It is easiest method product drying but it has following disadvantage: [1–4]

- (1) It depends on climate conditions and requires a large surface and long time of exposure to the sun. Final product condition is on observations of unskilled human being.
- (2) Final condition of dried product will never control scientifically.
- (3) Product may loss quantity wise on attack of birds, animals and rodents.
- (4) Product may expose to all kinds of weather changes.
- (5) Drying rate is very low for direct solar drying.
- (6) The direct exposure to sunlight can greatly reduce the level of nutrients such as vitamins in the dried product.

Indirect Solar Drying

Indirect solar drying or convective solar drying is the new technique of product drying. It is very efficient method than the direct type of solar drying. In this method the atmospheric air is heated in flat plate collector or concentrated type solar collector. The heating process is either passive or active. This hot air then flow in the cabin where products are stored. Therefore moisture from the product may lost by convection and diffusion. This method of drying is used to avoid direct exposing to the solar radiation. This method mainly reduces the disadvantages of direct solar drying [5, 6].

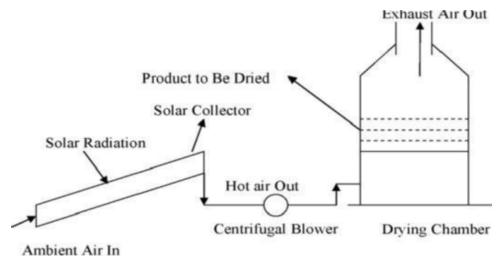


Figure 5. Line Diagram of Indirect Solar Dryer

Figure 6. Experimental Indirect Solar with Airflow Control [7]

An Indirect Solar Dryer with the Re- Circulation of Air

In this solar dryer a duct is provided from moter to drying chamber to recirculate the hot air from moter to the chamber so the losses gets reduces and the time taken in drying the food product is less than the time taken in normal indirect dryers and from experimental results the moisture removal rate is also increased in comparison to before its approximately 80 to become 10.5% instead of 13.5%.so an indirect faced solar dryer having recirculation of hot air is more suitable then others from the food preservation as well as time conservation and energy conservation also.

Advantages

Disadvantages of Indirect Solar Drying [3]

and

- 1. Drying rate is high as compare to direct solar.
- 2. Final condition of product after drying can be controlled scientifically.
- 3. Losses in product are avoided on the circumstances of natural phenomena.
- 4. Floor surface area required is very low for the same quantity of material in direct solar drying.
- 5. Same dryer can be used for different seasonal products.
- 6. Preserve the nutrient content in product as avoiding direct exposure to solar radiations.
- 7. Main disadvantage of indirect solar drying is the high initial cost.

Mixed Mode Solar Drying

It is combination of direct and indirect solar drying method. Product may dry with both direct exposure to solar radiation and hot air supplier on it. Air may heated in solar energy collector first then pass to the chamber where products are stored. In this process product may dry according to convective moisture loss. The same chamb System is divided into three main components: an air-heater, drying chamber, and a chimney.

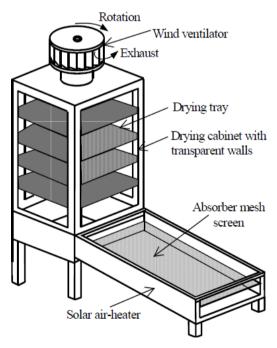


Figure 7. Solar Cabinet Dryer Table 2. For Finding Different Type Solar Dryer

Name of Sola		Findings
Dryer	Designers	
	Mühlbauer	This is one of the simplest solar dryer of low capacity
	Ondier et al.	Solar radiation is the main source and overcome the
Direct Solar Dryer		discolorness of the crops
	Al-Juamily et al.	Temperature is the main factor on drying rate and in off
		shine hours the drying technology is affected
	Goyal and Tiwari	Reverse flat plate collector was used and gave best result
	Sharma et al.	High quality drying products get by producing higher
		efficiency
Indirect Solar Dryer	Sharma et al.	It is available for small farms and under bad weather it
		produces good quality products
	El-Sebaii et al.	The drying time is eminently decrease dand drying
		efficiency isgood
	Exell and	Get optimal value of drying sectors using computer
	Kornsakoo	modelling
	Simate	Contains separate collector sand this dryer is used for drying
		crops in wet season
Mixed Mode Sola	u Zaman and Bala	The drying rate was highest and this kind of dryer is used
Dryer		for drying rough rice
	Zomorodian et al.	This dryer gives satisfactory result for best drying efficiency
		and moisture content
	Bala et al.	Artificial network is used and predicting the potentiality of
		the dryer
Natural Convection	Oosthuizen	It is a low cost solar dryer and gives vary satisfactory result
Solar Dryer	Garg and Kumar	It is low cost and its performance is satisfactory
	Later Ezeike	Design of this dryer is very simple and gives high efficiency
	Midilli	Simple, available and locally found materials are used to
		make this type of dryer
	Sodha et al.	Save a large amount of fuel. Product quality is better than
		any other sand keeps products neat and clean
	Ratti and	In ambient temperature this kind of dryer is more
Forced Convection	Mujumdar	appropriate for drying pistachio and sample is perfectly
Solar Dryer		dried in this dryer
	Arata and Sharma	This dryer is suitable for prediction the temperature and
		moisture content under control and constant rate
	Pawar et al.	The parameter s of drying system are time dependent and
		it is performed to predict the drying rate

Vol. 2 Iss. 2 Year 2020

Air-heater through which the drying air is heated as it flows over and under an absorber plate that is heated in turn by direct absorption of incident radiation. Crop to be dried is placed in drying chamber. The moist air flows through chimney and escapes into the surrounding is partially or totally covered with the transparent material to exposure the products to solar radiation.

Figure 8. Experimental Set-Ups for Forced Convection Mixed Mode Solar Dryer in Real Climatic Condition.

Disadvantages of Solar Drying System

- 1) Quality of products are not obtained in some cases.
- 2) Adequate solar radiation is required.
- 3) It is more expensive.
- 4) Require more time for drying.

Applications of Different Solar Dryers

Direct solar drying is mainly used in on- farming sectors. It is also suitable for small farmers in rural areas, where electrical power is not available. This kind of dryer is more efficient in drying small amounts of crops, fruits, and vegetables. A locally made indirect- type natural convection dryer is useful for drying fruits and vegetables in rural areas. A solar tunnel dryer can be used for drying jackfruit bulb sand leather. The mixed- mode dryer is cheap, readily available, and can be easily made by local farmers. Tomatoes, mango slices, and grains can be dried using this dryer, which is driven by a fan .Therefore; agricultural products are dried within a short time at ambient temperature. The natural convection dryer is more advantageous and applicable than other types. Mean while, the low-cost indirect- type natural convection solar dryers are used for drying cassava, bananas, and rough rice, among other products .The forced convection solar

dryer is used in small Firms with limited financial support from large industrial sectors .This efficient dryer requires a short time to dry products and is built to last.

Conclusion

After the study of various type of dryers, an indirect foced solar dryer having recirculation of hot air is more suitable then others from the food preservation as well as time conservaration and energy conservation also because there is no risk of proper sun light as that in direct solar dryer and losses of air in that type of indirect solar dryer where there is no recirculation of air and takes more time in drying process in comparision to air recirculating solar dryer.the direct driers are mainly best for those areas where the proper resources (such as electricity and other fabricating material which is used the fabrication of indirect and mixed mode dryer)are not available.

References

- [1] Ampratwum DB, Dorvlo ASS. Evaluation of a solar cabinet dryer as an airheating system. Applied Energy 1998; 59(1): 63–71p.
- [2] Sharma SJ, Sharma VK, Ranjana JHA, Ray RA. Evaluation of the performance of a cabinet type solar dryer. Energy Conversion & Management 1990; 30(2): 75–80p.
- [3] Minka CJ. Potential improvement to traditional solar crop drying in Cameroon: research and development solar drying in Africa. In: Proceedings of a Workshop held in Dakar; 1986; 11– 22p.
- [4] Gbaha P, Andoh HY, Saraka JK, Koua BK, Toure S. Experimental investigation of a solar dryer with natural convective heat flow. Renewable Energy 2007; 32: 1817–29p.
- [5] Singh PP, Singh S, Dhaliwal SS. Multi-shelf domestic solar dryer. Energy Conversion & Management 2006; 47: 1799–815p.
- [6] Mursalim, Supratomo, Dewi YS. Drying of cashew nut in shell using solar dryer. Science & Technology 2002; 3(2): 25–33p.
- [7] Muhlbauer W, Hofacker W, Muller H- M, Thaler M. Die Kaltlufttrockung von Weizen unter energetischem undmikrobiologischem Aspekt. Grundlagender Landtechnik 2013; 31.

Acknowledgements: NIL

Conflict of interest: NIL

About The License: © 2021 The Authors. This work is licensed under a Creative Commons Attribution 4.0 International Licensewhich permits unrestricted use, provided the original author and source are credited.